A008651 Molien series of binary icosahedral group.
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4
Offset: 0
Examples
The Molien series is (1+q^20+q^40)/((1-q^12)*(1-q^30)). Since every other term would be zero, we replace q^2 with x to get the sequence. G.f. = 1 + x^6 + x^10 + x^12 + x^15 + x^16 + x^18 + x^20 + x^21 + x^22 + ... G.f. = 1 + q^12 + q^20 + q^24 + q^30 + q^32 + q^36 + q^40 + q^42 + q^44 + ...
References
- T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 19.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Burnett Meyer, On the symmetries of spherical harmonics, Canadian Journal of Mathematics 6 (1954): 135-157.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1,1,1,0,-1,-1).
Crossrefs
Cf. A319974 for harmonic polynomials in four variables invariant under a group.
Programs
-
Magma
I:=[1,0,0,0,0,0,1,0,0]; [n le 9 select I[n] else -Self(n-1) +Self(n-3)+Self(n-4)+Self(n-5)+Self(n-6)-Self(n-8)-Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jun 24 2015
-
Maple
t1:=(1+x^10+x^20)/((1-x^6)*(1-x^15)); series(t1,x,100); seriestolist(%);
-
Mathematica
a[ n_] := With[ {s = Boole[ n<0 ], m = If[ n<0, -1-n, n]}, (-1)^s * SeriesCoefficient[(1+x^15)/((1-x^6)*(1-x^10)), {x, 0 ,m}]]; (* Michael Somos, Dec 01 2014 *) LinearRecurrence[{-1,0,1,1,1,1,0,-1,-1}, {1,0,0,0,0,0,1,0,0}, 100] (* Harvey P. Dale, May 04 2017 *)
-
PARI
Vec(O(x^99)+(1+x^10+x^20)/((1-x^6)*(1-x^15))) \\ M. F. Hasler, Dec 01 2014
-
PARI
{a(n) = my(s=n<0); if(s, n = -1-n); (-1)^s * polcoeff( (1 + x^15) / ( (1 - x^6) * (1 - x^10) ) + x * O(x^n), n)}; /* Michael Somos, Dec 01 2014 */
-
PARI
{a(n) = (n\30) + [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1][n%30 + 1]}; /* Michael Somos, Dec 01 2014 */
-
Sage
def A008651_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^10+x^20)/((1-x^6)*(1-x^15))).list() A008651_list(100) # G. C. Greubel, Sep 07 2019
Formula
G.f.: (1 +x -x^3 -x^4 -x^5 +x^7 +x^8)/((1+x)*(1-x)^2*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - R. J. Mathar, Dec 01 2014
Euler transform of length 30 sequence [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Dec 01 2014
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Dec 01 2014
0 = 1 + a(n) + 2*a(n+1) + 2*a(n+2) + a(n+3) - a(n+5) - 2*a(n+6) - 2*a(n+7) - a(n+8) for all n in Z. - Michael Somos, Dec 01 2014
G.f.: (1+x^15)/((1-x^10)*(1-x^6)) - not reduced William Lionheart, May 04 2019
Comments