cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008651 Molien series of binary icosahedral group.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

Meyer's generating function h(t,G) generates the sequence of the dimensions of the spaces of G-invariant harmonic polynomials of each degree, where G is a point group on three-dimensional Euclidean space. For G=I, the icosahedral rotation group, the generating function gives rise to this sequence. See Table 1, p. 143. - William Lionheart, May 04 2019

Examples

			The Molien series is (1+q^20+q^40)/((1-q^12)*(1-q^30)). Since every other term would be zero, we replace q^2 with x to get the sequence.
G.f. = 1 + x^6 + x^10 + x^12 + x^15 + x^16 + x^18 + x^20 + x^21 + x^22 + ...
G.f. = 1 + q^12 + q^20 + q^24 + q^30 + q^32 + q^36 + q^40 + q^42 + q^44 + ...
		

References

  • T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 19.

Crossrefs

Cf. A319974 for harmonic polynomials in four variables invariant under a group.

Programs

  • Magma
    I:=[1,0,0,0,0,0,1,0,0]; [n le 9 select I[n] else -Self(n-1) +Self(n-3)+Self(n-4)+Self(n-5)+Self(n-6)-Self(n-8)-Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jun 24 2015
    
  • Maple
    t1:=(1+x^10+x^20)/((1-x^6)*(1-x^15));
    series(t1,x,100);
    seriestolist(%);
  • Mathematica
    a[ n_] := With[ {s = Boole[ n<0 ], m = If[ n<0, -1-n, n]}, (-1)^s * SeriesCoefficient[(1+x^15)/((1-x^6)*(1-x^10)), {x, 0 ,m}]]; (* Michael Somos, Dec 01 2014 *)
    LinearRecurrence[{-1,0,1,1,1,1,0,-1,-1}, {1,0,0,0,0,0,1,0,0}, 100] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    Vec(O(x^99)+(1+x^10+x^20)/((1-x^6)*(1-x^15))) \\ M. F. Hasler, Dec 01 2014
    
  • PARI
    {a(n) = my(s=n<0); if(s, n = -1-n); (-1)^s * polcoeff( (1 + x^15) / ( (1 - x^6) * (1 - x^10) ) + x * O(x^n), n)}; /* Michael Somos, Dec 01 2014 */
    
  • PARI
    {a(n) = (n\30) + [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1][n%30 + 1]}; /* Michael Somos, Dec 01 2014 */
    
  • Sage
    def A008651_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^10+x^20)/((1-x^6)*(1-x^15))).list()
    A008651_list(100) # G. C. Greubel, Sep 07 2019

Formula

G.f.: (1 +x -x^3 -x^4 -x^5 +x^7 +x^8)/((1+x)*(1-x)^2*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - R. J. Mathar, Dec 01 2014
Euler transform of length 30 sequence [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Dec 01 2014
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Dec 01 2014
0 = 1 + a(n) + 2*a(n+1) + 2*a(n+2) + a(n+3) - a(n+5) - 2*a(n+6) - 2*a(n+7) - a(n+8) for all n in Z. - Michael Somos, Dec 01 2014
G.f.: (1+x^15)/((1-x^10)*(1-x^6)) - not reduced William Lionheart, May 04 2019