cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008718 Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 9, 10, 11, 12, 15, 16, 19, 20, 23, 26, 29, 30, 36, 39, 42, 45, 51, 54, 60, 63, 69, 75, 81, 84, 94, 100, 106, 112, 122, 128, 138, 144, 154, 164, 174, 180, 195, 205, 215, 225, 240, 250, 265, 275, 290, 305, 320, 330, 351, 366
Offset: 0

Views

Author

Keywords

Comments

Molien series for genus-2 weight enumerators of binary self-dual codes is (1+x^18)/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^24)). Exponents have been divided by 2 to get the sequence.
Or, Molien series for 4-dimensional representation of 2.{3,4,3}. This is the real 4-dimensional Clifford group of genus 2 and order 2304.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)); seq(coeff(series(%, x, n+1), x, n), n = 0..65); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    CoefficientList[Series[(1+x^9)/((1-x)(1-x^4)(1-x^6)(1-x^12)), {x,0,65}], x] (* Harvey P. Dale, Apr 01 2011 *)
    LinearRecurrence[{1,0,1,0,-1,0,-1,1,0,0,0,1,-1,0,-1,0,1,0,1,-1}, {1,1,1, 1,2,2,3,3,4,5,6,6,9,10,11,12,15,16,19,20}, 65] (* Ray Chandler, Jul 16 2015 *)
  • PARI
    my(x='x+O('x^65)); Vec((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008718_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))).list()
    A008718_list(65) # G. C. Greubel, Sep 09 2019

Formula

a(n) ~ (1/864)*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^3+x^6 ) / ( (1-x+x^2) *(x^4-x^2+1) *(1+x)^2 *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - R. J. Mathar, Dec 18 2014