cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008731 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 5, 3, 7, 5, 9, 7, 12, 9, 15, 12, 18, 15, 22, 18, 26, 22, 30, 26, 35, 30, 40, 35, 45, 40, 51, 45, 57, 51, 63, 57, 70, 63, 77, 70, 84, 77, 92, 84, 100, 92, 108, 100, 117, 108, 126, 117, 135, 126, 145, 135, 155, 145, 165, 155, 176, 165, 187
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of solutions to the equation X + Y + Z = n such that X < Z, Y < Z, and X + Y >= Z. - Geoffrey Critzer, Jul 13 2013
Number of partitions of n into two sorts of 2, and one sort of 3. - Joerg Arndt, Jul 14 2013

Examples

			a(4) = 3 because we have:
1 + 3 + 4 = 2 + 2 + 4 = 3 + 1 + 4. - _Geoffrey Critzer_, Jul 13 2013
G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 5*x^6 + 3*x^7 + 7*x^8 + 5*x^9 + ...
		

Crossrefs

First differences of A008763.

Programs

  • GAP
    a:=[1,0,2,1,3,2,5];; for n in [8..70] do a[n]:=2*a[n-2]+a[n-3]-a[n-4]-2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/(1-x^2)^2/(1-x^3),{x,0,70}],x] (* Geoffrey Critzer, Jul 13 2013 *)
    a[ n_] := Quotient[ (2 n^2 + If[ OddQ[n], 8 n + 6, 20 n + 48]), 70]; (* Michael Somos, Feb 02 2015 *)
    a[ n_] := Module[{m=n}, If[ n < 0, m=-7-n]; SeriesCoefficient[ 1 / ( (1 - x^2)^2 * (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Feb 02 2015 *)
    LinearRecurrence[{0,2,1,-1,-2,0,1},{1,0,2,1,3,2,5},70] (* Harvey P. Dale, Feb 23 2018 *)
  • PARI
    {a(n) = (2*n^2 + if( n%2, 8*n + 6, 20*n + 48)) \ 48}; /* Michael Somos, Feb 02 2015 */
    
  • PARI
    {a(n) = if( n<0, n=-7-n); polcoeff( 1 / ((1 - x^2)^2 * (1 - x^3)) + x * O(x^n), n)}; /* Michael Somos, Feb 02 2015 */
    
  • Sage
    (1/((1-x^2)^2*(1-x^3))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

G.f.: 1/((1-x^2)^2*(1-x^3)) = 1/((1-x)^3*(1+x)^2*(1+x+x^2)).
a(n) = (1/48)*(2*n^2 + 14*n + 27 + (6*n+21)*(-1)^n - 16(n=1 mod 3)).
Euler transform of length 3 sequence [ 0, 2, 1]. - Michael Somos, Feb 02 2015
a(n) = a(-7-n) for all n in Z. - Michael Somos, Feb 02 2015
0 = a(n) + a(n+1) - a(n+2) - 2*a(n+3) - a(n+4) + a(n+5) + a(n+6) - 1 for all n in Z. - Michael Somos, Feb 02 2015
a(n+3) - a(n) = 0 if n even, (n+5)/2 otherwise. - Michael Somos, Feb 02 2015
|a(n)-a(n-1)| = A154958(n). - R. J. Mathar, Aug 11 2021