A008732 Molien series for 3-dimensional group [2,n] = *22n.
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265
Offset: 0
Examples
From _Philippe Deléham_, Apr 05 2013: (Start) Stored in five columns: 1 2 3 4 5 7 9 11 13 15 18 21 24 27 30 34 38 42 46 50 55 60 65 70 75 81 87 93 99 105 112 119 126 133 140 (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 188
- Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=5]
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Crossrefs
Cf. A130520.
Programs
-
GAP
List([0..50], n-> Int((n+3)*(n+4)/10)); # G. C. Greubel, Jul 30 2019
-
Magma
[Floor((n+3)*(n+4)/10): n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
-
Maple
A092202 := proc(n) op(1+(n mod 5),[0,1,0,-1,0]) ; end proc: A010891 := proc(n) op(1+(n mod 5),[1,-1,0,0,0]) ; end proc: A008732 := proc(n) (n+2)*(n+5)/10+(A010891(n-1)+2*A092202(n-1))/5 ; end proc:
-
Mathematica
LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 7, 9}, 50] (* Jean-François Alcover, Jan 18 2018 *)
-
PARI
a(n)=(n+3)*(n+4)\10 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[floor((n+3)*(n+4)/10) for n in (0..50)] # G. C. Greubel, Jul 30 2019
Formula
a(n) = floor( (n+3)*(n+4)/10 ) = (n+2)*(n+5)/10 + b(n)/5 where b(n) = A010891(n-2) + 2*A092202(n-1) = 0, 1, 1, 0, -2, ... with period length 5.
G.f.: 1/((1-x)^2*(1-x^5)).
a(n) = a(n-5) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+5} floor(j/5).
a(n-5) = (1/2)floor(n/5)*(2*n - 3 - 5*floor(n/5)). (End)
a(n) = A130520(n+5). - Philippe Deléham, Apr 05 2013