A130520
a(n) = Sum_{k=0..n} floor(k/5). (Partial sums of A002266.)
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265, 275, 286, 297, 308, 319, 330, 342, 354, 366
Offset: 0
-
List([0..70], n-> Int((n-1)*(n-2)/10)); # G. C. Greubel, Aug 31 2019
-
[Round(n*(n-3)/10): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
-
seq(floor((n-1)*(n-2)/10), n=0..70); # G. C. Greubel, Aug 31 2019
-
Accumulate[Floor[Range[0,70]/5]] (* Harvey P. Dale, May 25 2016 *)
-
a(n) = sum(k=0, n, k\5); \\ Michel Marcus, May 13 2016
-
[floor((n-1)*(n-2)/10) for n in (0..70)] # G. C. Greubel, Aug 31 2019
A118015
a(n) = floor(n^2/5).
Original entry on oeis.org
0, 0, 0, 1, 3, 5, 7, 9, 12, 16, 20, 24, 28, 33, 39, 45, 51, 57, 64, 72, 80, 88, 96, 105, 115, 125, 135, 145, 156, 168, 180, 192, 204, 217, 231, 245, 259, 273, 288, 304, 320, 336, 352, 369, 387, 405, 423, 441, 460, 480, 500, 520, 540, 561, 583, 605, 627, 649, 672
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Dan Ismailescu and Yunkyu James Lee, Polynomially growing integer sequences all whose terms are composite, arXiv:2501.04851 [math.NT], 2025. See p. 1.
- R. D. Lobato, Recursive partitioning approach for the Manufacturer's Pallet Loading Problem.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
A008728
Molien series for 3-dimensional group [2,n ] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 193
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).
-
a:=[1,2,3,4,5,6,7,8,9,10,12,14];; for n in [13..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Jul 30 2019
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Jul 30 2019
-
g:= 1/((1-x)^2*(1-x^10)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
-
CoefficientList[Series[1/((1-x)^2(1-x^10)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^10))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A008726
Molien series 1/((1-x)^2*(1-x^8)) for 3-dimensional group [2,n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196, 203, 210, 217, 224, 232, 240, 248, 256, 264, 272, 280
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 191
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,10,12];; for n in [11..80] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 09 2019
-
R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x)^2*(1-x^8)) )); // G. C. Greubel, Sep 09 2019
-
seq(coeff(series(1/(1-x)^2/(1-x^8), x, n+1), x, n), n=0..80);
-
CoefficientList[Series[1/((1-x)^2*(1-x^8)), {x,0,80}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,10,12}, 80] (* Harvey P. Dale, Jan 07 2015 *)
-
my(x='x+O('x^80)); Vec(1/((1-x)^2*(1-x^8))) \\ G. C. Greubel, Sep 09 2019
-
def A008726_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^8))).list()
A008726_list(80) # G. C. Greubel, Sep 09 2019
A008727
Molien series for 3-dimensional group [2,n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 192
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,9,11,13];; for n in [12..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
-
seq(coeff(series(1/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
-
Drop[Accumulate[Floor[Range[70]/9]], 8] (* Jean-François Alcover, Mar 27 2013 *)
CoefficientList[Series[1/(1-x)^2/(1-x^9), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11,13},120] (* Harvey P. Dale, Feb 13 2022 *)
-
Vec(1/(1-x)^2/(1-x^9)+O(x^66)) /* Joerg Arndt, Mar 27 2013 */
-
def A008727_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)^2*(1-x^9))).list()
A008727_list(70) # G. C. Greubel, Sep 09 2019
A008729
Molien series for 3-dimensional group [2, n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 194
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
-
g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
-
CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A349841
Triangle T(n,k) built by placing all ones on the left edge, [1,0,0,0,0] repeated on the right edge, and filling the body using the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 2, 0, 1, 6, 15, 20, 15, 7, 2, 0, 1, 7, 21, 35, 35, 22, 9, 2, 0, 1, 8, 28, 56, 70, 57, 31, 11, 2, 0, 1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 0;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 2, 0;
1, 6, 15, 20, 15, 7, 2, 0;
1, 7, 21, 35, 35, 22, 9, 2, 0;
1, 8, 28, 56, 70, 57, 31, 11, 2, 0;
1, 9, 36, 84, 126, 127, 88, 42, 13, 2, 1;
-
Flatten[Table[CoefficientList[Series[(1 - x*y)/((1 - (x*y)^5)(1 - x - x*y)), {x, 0, 20}, {y, 0, 10}], {x, y}][[n+1,k+1]],{n,0,10},{k,0,n}]]
A008730
Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 195
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
-
seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
-
CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A238738
Expansion of (1 + 2*x + 2*x^2)/(1 - x - 2*x^3 + 2*x^4 + x^6 - x^7).
Original entry on oeis.org
1, 3, 5, 7, 11, 15, 18, 24, 30, 34, 42, 50, 55, 65, 75, 81, 93, 105, 112, 126, 140, 148, 164, 180, 189, 207, 225, 235, 255, 275, 286, 308, 330, 342, 366, 390, 403, 429, 455, 469, 497, 525, 540, 570, 600, 616, 648, 680, 697, 731, 765, 783, 819, 855, 874
Offset: 0
G.f.: 1 + 3*x + 5*x^2 + 7*x^3 + 11*x^4 + 15*x^5 + 18*x^6 + 24*x^7 + ...
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Illustration of the initial terms.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
-
m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)));
-
CoefficientList[Series[(1 + 2 x + 2 x^2)/(1 - x - 2 x^3 + 2 x^4 + x^6 - x^7), {x, 0, 60}], x]
-
makelist(coeff(taylor((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7), x, 0, n), x, n), n, 0, 60);
-
Vec((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)+O(x^60))
-
m = 60; L. = PowerSeriesRing(ZZ, m); f = (1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7); print(f.coefficients())
Showing 1-9 of 9 results.
Comments