A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A179052
Range and record values of number of partitions of n into powers of 10 (cf. A179051).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 217, 224, 231, 238
Offset: 0
A008729
Molien series for 3-dimensional group [2, n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0
..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 194
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,1,-2,1).
-
a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
-
g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
-
CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A279169
a(n) = floor( 4*n^2/5 ).
Original entry on oeis.org
0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0
-
[4*n^2 div 5: n in [0..60]];
-
Table[Floor[4 n^2/5], {n, 0, 60}]
LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
-
vector(60, n, n--; floor(4*n^2/5))
-
[int(4*n**2/5) for n in range(60)]
-
[floor(4*n^2/5) for n in range(60)]
A008730
Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 195
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1).
-
R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
-
seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
-
CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
-
my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
-
(1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
A136531
Coefficients of polynomials B(x,n) = ((1+a+b)*x - c)*B(x,n-1) - a*b*B(x,n-2) where B(x,0) = 1, B(x,1) = x, a=-b, b=1, c=1.
Original entry on oeis.org
1, 0, 1, 1, -1, 1, -1, 3, -2, 1, 2, -5, 6, -3, 1, -3, 10, -13, 10, -4, 1, 5, -18, 29, -26, 15, -5, 1, -8, 33, -60, 65, -45, 21, -6, 1, 13, -59, 122, -151, 125, -71, 28, -7, 1, -21, 105, -241, 338, -321, 217, -105, 36, -8, 1, 34, -185, 468, -730, 784, -609, 350, -148, 45, -9, 1
Offset: 0
Triangle begins
k=0 k=1 k=2 k=3 k=4 k=5 k=6
n=0: 1;
n=1: 0, 1;
n=2: 1, -1, 1;
n=3: -1, 3, -2, 1;
n=4: 2, -5, 6, -3, 1;
n=5: -3, 10, -13, 10, -4, 1;
n=6: 5, -18, 29, -26, 15, -5, 1;
-
C := ComplexField(); // T = A136531
T:= func< n,k | k eq n select 1 else Round(i^(k-n-1)*(i*Evaluate(GegenbauerPolynomial(n-k, k+1), 1/(2*i)) - Evaluate(GegenbauerPolynomial(n-k-1, k+1), 1/(2*i)))) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 26 2022
-
(* First program *)
a = -b; c = 1; b = 1;
B[x_, n_]:= B[x, n]= If[n<2, x^n, ((1+a+b)*x -c)*B[x, n-1] -a*b*B[x, n-2]];
Table[CoefficientList[B[x,n], x], {n,0,10}]//Flatten
(* Second program *)
B[x_, n_]:= (-1)^n*(Fibonacci[n+1, 1-x] - Fibonacci[n, 1-x]);
Table[CoefficientList[B[x, n], x], {n,0,16}]//Flatten (* G. C. Greubel, Sep 22 2022 *)
-
def T(n,k): # T = A136531
if k==n: return 1
else: return i^(k-n-1)*(i*gegenbauer(n-k, k+1, 1/(2*i)) - gegenbauer(n-k-1, k+1, 1/(2*i)))
flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 26 2022
A266085
Alternating sum of heptagonal numbers.
Original entry on oeis.org
0, -1, 6, -12, 22, -33, 48, -64, 84, -105, 130, -156, 186, -217, 252, -288, 328, -369, 414, -460, 510, -561, 616, -672, 732, -793, 858, -924, 994, -1065, 1140, -1216, 1296, -1377, 1462, -1548, 1638, -1729, 1824, -1920, 2020, -2121, 2226, -2332, 2442, -2553
Offset: 0
-
[((10*n^2+4*n-3)*(-1)^n+3)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
-
R:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!(-x*(1 - 4*x)/((1 - x)*(1 + x)^3))); // Marius A. Burtea, Nov 13 2019
-
Table[((10 n^2 + 4 n - 3) (-1)^n + 3)/8, {n, 0, 50}]
CoefficientList[Series[(x - 4 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
LinearRecurrence[{-2,0,2,1},{0,-1,6,-12},60] (* Harvey P. Dale, Jan 26 2023 *)
-
x='x+O('x^100); concat(0, Vec(-x*(1-4*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
Showing 1-7 of 7 results.
Comments