cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118015 a(n) = floor(n^2/5).

Original entry on oeis.org

0, 0, 0, 1, 3, 5, 7, 9, 12, 16, 20, 24, 28, 33, 39, 45, 51, 57, 64, 72, 80, 88, 96, 105, 115, 125, 135, 145, 156, 168, 180, 192, 204, 217, 231, 245, 259, 273, 288, 304, 320, 336, 352, 369, 387, 405, 423, 441, 460, 480, 500, 520, 540, 561, 583, 605, 627, 649, 672
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 10 2006

Keywords

Comments

It seems that for n >= 5, a(n) is the maximum number of non-overlapping 1 X 5 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's program. - Dmitry Kamenetsky, Aug 03 2009
Ismailescu & Lee prove that for n > 6, a(n) is composite. - Charles R Greathouse IV, Jan 10 2025

Crossrefs

Programs

Formula

G.f.: x^3*(1 + x)/((1 + x + x^2 + x^3 + x^4)*(1 - x)^3). - Klaus Brockhaus, Nov 18 2008
a(n) = A008732(n-4) + A008732(n-3). - R. J. Mathar, Nov 22 2008
a(5*m+r) = m*(5*m + 2*r) + a(r), with m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*(5*4 + 2*3) + a(3) = 104 + 1 = 105. - Bruno Berselli, Dec 12 2016
Sum_{n>=3} 1/a(n) = 25/16 + Pi^2/30 + sqrt(5-2*sqrt(5))*Pi/4. - Amiram Eldar, Aug 13 2022

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A033437 Number of edges in 5-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 14, 19, 25, 32, 40, 48, 57, 67, 78, 90, 102, 115, 129, 144, 160, 176, 193, 211, 230, 250, 270, 291, 313, 336, 360, 384, 409, 435, 462, 490, 518, 547, 577, 608, 640, 672, 705, 739, 774, 810, 846, 883, 921, 960, 1000, 1040, 1081, 1123, 1166, 1210, 1254
Offset: 0

Views

Author

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(1,5) (also sequence R_n(4,5)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013

References

  • R. L. Graham et al., eds., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A279169.

Programs

Formula

G.f.: (x^5+x^4+x^3+x^2)/((1-x^5)*(1-x)^2).
a(n) = Sum_{k=0..n} A011558(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = floor( 2n^2/5 ). - Wesley Ivan Hurt, Jun 20 2013
a(n) = Sum_{i=1..n} floor(4*i/5). - Wesley Ivan Hurt, Sep 12 2017

A184535 a(n) = floor(3/5 * n^2), with a(1)=1.

Original entry on oeis.org

1, 2, 5, 9, 15, 21, 29, 38, 48, 60, 72, 86, 101, 117, 135, 153, 173, 194, 216, 240, 264, 290, 317, 345, 375, 405, 437, 470, 504, 540, 576, 614, 653, 693, 735, 777, 821, 866, 912, 960, 1008, 1058, 1109, 1161, 1215, 1269, 1325, 1382, 1440, 1500, 1560, 1622, 1685, 1749, 1815, 1881, 1949, 2018, 2088, 2160, 2232, 2306, 2381
Offset: 1

Views

Author

Clark Kimberling, Jan 16 2011

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(2,5) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences see the cross references below. - Peter Bala, Aug 08 2013

Crossrefs

Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A002620 (= R_n(1,2)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

  • GAP
    Concatenation([1], List([2..10^3], n->Int(3/5 * n^2))); # Muniru A Asiru, Feb 04 2018
    
  • Maple
    1,seq(floor(3/5*n^2), n=2..10^3); # Muniru A Asiru, Feb 04 2018
  • Mathematica
    p[n_] := FractionalPart[(n^3 + 5)^(1/3)]; q[n_] := Floor[1/p[n]]; Table[q[n], {n, 1, 120}]
    Join[{1},LinearRecurrence[{2, -1, 0, 0, 1, -2, 1},{2, 5, 9, 15, 21, 29, 38},62]] (* Ray Chandler, Aug 31 2015 *)
  • PARI
    a(n) = if(n==1, 1, 3*n^2\5); \\ Altug Alkan, Mar 03 2018
    
  • Python
    def A184535(n): return 3*n**2//5 if n>1 else 1 # Chai Wah Wu, Aug 04 2025

Formula

a(n) = floor(1/{(5+n^3)^(1/3)}), where {}=fractional part.
a(n)= +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7), for n>8, with g.f. 1-x^2*(1+x)*(2*x^2-x+2)/ ((x^4+x^3+x^2+x+1) *(x-1)^3), so a(n) is (3n^2-2)/5 plus a fifth of A164116 for n>1. [Bruno Berselli, Jan 30 2011. See the following Bala's comment.]
From Peter Bala, Aug 08 2013: (Start)
a(n) = floor(3/5*n^2) for n >= 2.
The sequence b(n) := floor(3/5*n^2) - 3/5*n^2, n >= 1, is periodic with period [-3/5, -2/5, -2/5, -3/5, 0] of length 5. The generating function and recurrence equation given above easily follow from these observations.
The sequence c(n) := 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ) is also periodic with period 5, and calculation shows it has the same period as the sequence b(n). Thus b(n) = c(n), yielding the alternative formula a(n) = 3/5*n^2 + 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ), which is one of the formulas for the elliptic troublemaker sequence R_n(2,5) given in Stange (see Section 7, equation (21)). (End)

Extensions

Better name from Peter Bala, Aug 08 2013
Showing 1-3 of 3 results.