cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011

Crossrefs

Cf. A129756 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[0,1,2,3,4,7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    f := n->n^2/4+3*n/2+g(n);
    g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;
    seq(f(n), n=-3..50);
  • Mathematica
    CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x,0,60}], x] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008811_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()
    A008811_list(60) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023