cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A008810 a(n) = ceiling(n^2/3).

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), this sequence (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • Haskell
    a008810 = ceiling . (/ 3) . fromInteger . a000290
    a008810_list = [0,1,2,3,6] ++ zipWith5
                   (\u v w x y -> 2 * u - v + w - 2 * x + y)
       (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list)
       (tail a008810_list) a008810_list
    -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
    
  • Sage
    [ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019

Formula

a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
a(A008585(n)) = A033428(n). - Reinhard Zumkeller, Dec 20 2012
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022

A008812 Expansion of (1+x^5)/((1-x)^2*(1-x^5)).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 25, 30, 35, 40, 45, 52, 59, 66, 73, 80, 89, 98, 107, 116, 125, 136, 147, 158, 169, 180, 193, 206, 219, 232, 245, 260, 275, 290, 305, 320, 337, 354, 371, 388, 405, 424, 443, 462, 481, 500, 521, 542, 563, 584, 605, 628, 651, 674
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of six elements with zero second differences. - R. H. Hardin, Nov 16 2011
Also number of ordered triples (w,x,y) with all terms in {1,...,n+1} and w + 4*x = 5*y. Also the number of 3-tuples (w,x,y) with all terms in {1,...,n+1} and 5*w = 2*x +3*y. - Clark Kimberling, Apr 15 2012 [Corrected by Pontus von Brömssen, Jan 26 2020]
a(n) is also the number of 5 boxes polyomino (zig-zag patterns) packing into (n+3) X (n+3) square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013
Also, number of ordered pairs (x,y) with both terms in {1,...,n+1} and x+4*y divisible by 5; or number of ordered pairs (x,y) with both terms in {1,...,n+1} and 2*x+3*y divisible by 5. - Pontus von Brömssen, Jan 26 2020

Examples

			For n = 5 there are 8 0..5 arrays of six elements with zero second differences: [0,0,0,0,0,0], [0,1,2,3,4,5], [1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3,3,3], [4,4,4,4,4,4], [5,4,3,2,1,0], [5,5,5,5,5,5].
		

Crossrefs

Cf. A130497 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), this sequence (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,8,11];; for n in [8..65] do a[n]:=2*a[n-1]-a[n-2] +a[n-5]-2*a[n-6]+a[n-7]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^5)/((1-x)^2*(1-x^5)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^5)/((1-x)^2*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^5)/(1-x)^2/(1-x^5),{x,0,65}],x] (* or *) LinearRecurrence[{2,-1,0,0,1,-2,1}, {1,2,3,4,5,8,11}, 65] (* Harvey P. Dale, Apr 17 2015 *)
  • PARI
    Vec((1+x^5)/(1-x)^2/(1-x^5)+O(x^65)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • Sage
    def A008812_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^5)/((1-x)^2*(1-x^5))).list()
    A008812_list(65) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^5)/((1-x)^2*(1-x^5)).
a(n) = 2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008813 Expansion of (1+x^6)/((1-x)^2*(1-x^6)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 21, 24, 29, 34, 39, 44, 49, 54, 61, 68, 75, 82, 89, 96, 105, 114, 123, 132, 141, 150, 161, 172, 183, 194, 205, 216, 229, 242, 255, 268, 281, 294, 309, 324, 339, 354, 369, 384, 401, 418, 435, 452, 469, 486, 505, 524, 543, 562
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of 7 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), this sequence (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,9,12];; for n in [9..70] do a[n]:=2*a[n-1]-a[n-2] +a[n-6]-2*a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^6)/((1-x)^2*(1-x^6)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^6)/((1-x)^2*(1-x^6)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^6)/(1-x)^2/(1-x^6), {x,0,70}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1}, {1,2,3,4,5,6,9,12}, 70] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    Vec((1+x^6)/((1-x)^2*(1-x^6)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    def A008813_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^6)/((1-x)^2*(1-x^6))).list()
    A008813_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^6)/((1-x)^2*(1-x^6)).
a(n) = 2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008814 Expansion of (1+x^7)/((1-x)^2*(1-x^7)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28, 33, 38, 43, 48, 53, 58, 63, 70, 77, 84, 91, 98, 105, 112, 121, 130, 139, 148, 157, 166, 175, 186, 197, 208, 219, 230, 241, 252, 265, 278, 291, 304, 317, 330, 343, 358, 373, 388, 403, 418, 433, 448, 465, 482, 499
Offset: 0

Views

Author

Keywords

Comments

Number of 0..n arrays of 8 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), this sequence (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,10,13];; for n in [10..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^7)/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^7)/((1-x)^2*(1-x^7)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^7)/(1-x)^2/(1-x^7), {x,0,70}], x] (* or *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,10,13}, 70] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    a(n)=(n*(n+2)+[7,11,13,13,11,7,1][n%7+1])/7 \\ Charles R Greathouse IV, Nov 16 2011
    
  • PARI
    a(n)=(n*(n+2)+13-6*(n%7==6))\7  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008814_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^7)/((1-x)^2*(1-x^7))).list()
    A008814_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^7)/((1-x)^2*(1-x^7)).
a(n) = 2*a(n-1) -a(n-2) +a(n-7) -2*a(n-8) +a(n-9). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008815 Expansion of (1+x^8)/((1-x)^2*(1-x^8)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32, 37, 42, 47, 52, 57, 62, 67, 72, 79, 86, 93, 100, 107, 114, 121, 128, 137, 146, 155, 164, 173, 182, 191, 200, 211, 222, 233, 244, 255, 266, 277, 288, 301, 314, 327, 340, 353, 366, 379, 392, 407, 422
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), this sequence (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,11,14];; for n in [11..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    I:=[1,2,3,4,5,6,7,8,11,14]; [n le 10 select I[n] else 2*Self(n-1) -Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, May 14 2019
    
  • Maple
    seq(coeff(series((1+x^8)/((1-x)^2*(1-x^8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^8)/(1-x)^2/(1-x^8), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,11,14}, 50] (* Harvey P. Dale, Dec 17 2016 *)
  • PARI
    a(n)=(n*(n+2)+14+4*(n%4-1)*(-1)^(n\4))\8  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^8)/((1-x)^2*(1-x^8))).list()
    A008815_list(50) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = floor( (n*(n+2) + 14 + 4*((n mod 4) - 1)*(-1)^floor(n/4))/8 ). - Tani Akinari, Jul 25 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - Vincenzo Librandi, May 14 2019

A085046 a(n) = n^2 - (1 + (-1)^n)/2.

Original entry on oeis.org

1, 3, 9, 15, 25, 35, 49, 63, 81, 99, 121, 143, 169, 195, 225, 255, 289, 323, 361, 399, 441, 483, 529, 575, 625, 675, 729, 783, 841, 899, 961, 1023, 1089, 1155, 1225, 1295, 1369, 1443, 1521, 1599, 1681, 1763, 1849, 1935, 2025, 2115, 2209, 2303, 2401, 2499, 2601
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003

Keywords

Comments

Sequence pattern looks like this 1*1, 1*3, 3*3, 3*5, 5*5, 5*7, 7*7, 7*9, 9*9, 9*11, 11*11, ... = A109613(n-1)*A109613(n).
a(n+1) is the determinant of the n X n matrix M_(i, i)=3, M_(i, j)=2 if (i+j) is even, M_(i, j)=0 if (i+j) is odd. - Benoit Cloitre, Aug 06 2003
a(n) is also the longest path, in number of cells, between diagonally opposite corners of an n X n matrix if diagonal movement between adjacent cells is not allowed and no cell is used more than once. - Ray G. Opao, Jul 02 2007
(-1)^n*a(n) appears to be the Hankel transform of A141222. - Paul Barry, Jun 14 2008
Take an n X n square grid and add unit squares along each side except for the corners --> do this repeatedly along each side with the same restriction until no squares can be added. 4*a(n) is the total number of unit edges in each figure (see example and cf. A255840, A255876). - Wesley Ivan Hurt, Mar 09 2015

Examples

			4*a(n) is the number of unit edges in the pattern below (see comments).
                                                                 _
                                                               _|_|_
                            _              _ _               _|_|_|_|_
                          _|_|_          _|_|_|_           _|_|_|_|_|_|_
              _ _       _|_|_|_|_      _|_|_|_|_|_       _|_|_|_|_|_|_|_|_
    _        |_|_|     |_|_|_|_|_|    |_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
   |_|       |_|_|       |_|_|_|      |_|_|_|_|_|_|       |_|_|_|_|_|_|_|
                           |_|          |_|_|_|_|           |_|_|_|_|_|
                                          |_|_|               |_|_|_|
                                                                |_|
   n=1        n=2          n=3             n=4                  n=5
- _Wesley Ivan Hurt_, Mar 09 2015
		

Crossrefs

Cf. A109613. [Bruno Berselli, Sep 17 2013]

Programs

Formula

a(1) = 1, a(2) = 3, then a(2n) = (a(2n-1)*a(2n+1))^1/2 and a(2n+1) = {a(2n) + a(2n+2)}/2. Even-indexed terms are the geometric mean, and odd-indexed terms are the arithmetic mean, of their neighbors.
a(2n+1) = (2n+1)^2 and a(2n) = 4n^2 - 1.
a(n) = A008811(2n) - 1. - N. J. A. Sloane, Jun 12 2004
From Bruno Berselli, Sep 17 2013: (Start)
G.f.: x*(1 + x + 3*x^2 - x^3)/((1+x)*(1-x)^3).
a(n) = n^2 - (1 + (-1)^n)/2. (End)
a(1)=1, a(2)=3, a(3)=9, a(4)=15, a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Oct 25 2015
E.g.f.: 1 - cosh(x) + x*(1 + x)*(cosh(x) + sinh(x)). - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/8 + 1/2. - Amiram Eldar, Aug 25 2022

Extensions

More terms from Benoit Cloitre, Aug 06 2003
Formula added in the first comment by Bruno Berselli, Sep 17 2013
Replaced name with Sep 17 2013 formula from Bruno Berselli [Wesley Ivan Hurt, May 17 2020]

A200272 T(n,k) is the number of 0..k arrays x(0..n+1) of n+2 elements with zero n-1st differences.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 7, 6, 5, 2, 1, 7, 10, 9, 8, 5, 2, 1, 8, 13, 14, 13, 8, 5, 2, 1, 9, 16, 25, 18, 13, 8, 7, 2, 1, 10, 21, 36, 37, 26, 21, 16, 3, 2, 1, 11, 26, 47, 64, 53, 34, 31, 4, 3, 2, 1, 12, 31, 64, 97, 112, 53, 52, 19, 10, 7, 2, 1, 13, 36, 87, 140, 197, 118, 83
Offset: 1

Views

Author

R. H. Hardin Nov 15 2011

Keywords

Comments

Each row is an Ehrhart quasi-polynomial. - Robert Israel, May 04 2021

Examples

			Some solutions for n=7 k=6
..3....2....3....3....5....2....3....4....0....6....3....5....1....6....0....1
..3....2....3....3....1....2....3....0....4....2....3....1....5....2....4....5
..6....1....3....4....0....0....2....1....3....4....5....3....5....5....2....1
..6....1....3....4....1....0....2....2....2....5....5....4....4....6....1....0
..3....2....3....3....3....2....3....2....2....4....3....3....3....4....2....3
..0....3....3....2....5....4....4....2....2....3....1....2....2....2....3....6
..0....3....3....2....6....4....4....3....1....4....1....3....1....3....2....5
..3....2....3....3....5....2....3....4....0....6....3....5....1....6....0....1
..3....2....3....3....1....2....3....0....4....2....3....1....5....2....4....5
Table starts
.1.1..1..1...1...1...1....1....1....1.....1.....1.....1.....1......1.....1
.2.3..4..5...6...7...8....9...10...11....12....13....14....15.....16....17
.2.3..4..7..10..13..16...21...26...31....36....43....50....57.....64....73
.2.3..6..9..14..25..36...47...64...87...110...143...176...209....258...311
.2.5..8.13..18..37..64...97..140..207...286...399...528...687....878..1127
.2.5..8.13..26..53.112..197..302..465...688..1013..1406..1995...2790..3759
.2.5..8.21..34..53.118..267..516..901..1454..2249..3264..5135...7616.11061
.2.7.16.31..52..83.228..515.1014.1903..3236..5351..8174.13719..21660.33377
.2.3..4.19..34.119.236..589.1236.2707..5062.10081.17712.30497..51072.83605
.2.3.10.37.104.261.574.1181.2560.5137.10922.23531.44970.81485.148250
		

Crossrefs

Row 3 is A008811(n+1).

A008816 Expansion of (1+x^9)/((1-x)^2*(1-x^9)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 337, 350, 363, 376, 389, 402
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), this sequence (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,12,15];; for n in [12..70] do a[n]:=2*a[n-1] -a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^9)/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
  • Mathematica
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,12,15}, 70] (* or *) CoefficientList[Series[(1+x^9)/((1-x)^2*(1-x^9)), {x,0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec((1+x^9)/((1-x)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^8)/((1-x)^2*(1-x^8))).list()
    A008815_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^9)/((1-x)^2*(1-x^9)). - G. C. Greubel, Sep 12 2019

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008817 Expansion of (1+x^10)/((1-x)^2*(1-x^10)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), this sequence (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10, 13,16];; for n in [13..80] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^10)/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^10)/((1-x)^2*(1-x^10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^10)/(1-x)^2/(1-x^10), {x,0,80}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,10, 13,16}, 80] (* Harvey P. Dale, Jul 31 2014 *)
  • PARI
    my(x='x+O('x^80)); Vec((1+x^10)/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008817_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^10)/((1-x)^2*(1-x^10))).list()
    A008817_list(80) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^10)/((1-x)^2*(1-x^10)).
a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=5, a(5)=6, a(6)=7, a(7)=8, a(8)=9, a(9)=10, a(10)=13, a(11)=16, a(n) = 2*a(n-1) - a(n-2) + a(n-10) - 2*a(n-11) + a(n-12). - Harvey P. Dale, Jul 31 2014

A365539 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.

Original entry on oeis.org

1, 4, 1, 9, 2, 1, 16, 5, 2, 1, 25, 8, 3, 2, 1, 36, 13, 6, 3, 2, 1, 49, 18, 9, 4, 3, 2, 1, 64, 25, 12, 7, 4, 3, 2, 1, 81, 32, 17, 10, 5, 4, 3, 2, 1, 100, 41, 22, 13, 8, 5, 4, 3, 2, 1, 121, 50, 27, 16, 11, 6, 5, 4, 3, 2, 1, 144, 61, 34, 21, 14, 9, 6, 5, 4, 3, 2, 1
Offset: 0

Views

Author

Stefano Spezia, Sep 08 2023

Keywords

Examples

			Array begins:
   1,  1,  1,  1,  1,  1,  1, ...
   4,  2,  2,  2,  2,  2,  2, ...
   9,  5,  3,  3,  3,  3,  3, ...
  16,  8,  6,  4,  4,  4,  4, ...
  25, 13,  9,  7,  5,  5,  5, ...
  36, 18, 12, 10,  8,  6,  6, ...
  49, 25, 17, 13, 11,  9,  7, ...
  64, 32, 22, 16, 14, 12, 10, ...
  ...
		

Crossrefs

Cf. A000027 (main diagonal and superdiagonals), A000290 (k=1), A000982 (k=2), A008810 (k=3), A008811 (k=4), A008812 (k=5), A008813 (k=6), A008814 (k=7), A008815 (k=8), A008816 (k=9), A008817 (k=10).
Cf. A365540 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=SeriesCoefficient[(1+x^k)/((1-x)^2*(1-x^k)),{x,0,n}]; Table[A[n-k,k],{n,0,12},{k,n}]//Flatten
Showing 1-10 of 11 results. Next