A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
Comments
In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014
Examples
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1). Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ... a(0) = 1; a(1) = 1 + 3 = 4; a(2) = 1 + 3 + 7 = 11; a(3) = 1 + 3 + 7 + 9 = 20; a(4) = 1 + 3 + 7 + 9 + 13 = 33; a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
References
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] == Abs[x - y], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
PARI
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
Formula
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021
A056109 Fifth spoke of a hexagonal spiral.
1, 6, 17, 34, 57, 86, 121, 162, 209, 262, 321, 386, 457, 534, 617, 706, 801, 902, 1009, 1122, 1241, 1366, 1497, 1634, 1777, 1926, 2081, 2242, 2409, 2582, 2761, 2946, 3137, 3334, 3537, 3746, 3961, 4182, 4409, 4642, 4881, 5126, 5377, 5634, 5897, 6166, 6441
Offset: 0
Comments
Squared distance from (0,0,-1) to (n,n,n) in R^3. - James R. Buddenhagen, Jun 15 2013
Examples
Illustration of initial terms: . . o . o o o o o . o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o . o . . 1 6 17 34 - _Aaron David Fairbanks_, Feb 16 2025
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Illustration of initial terms
- Tanya Khovanova, Recursive Sequences
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Leo Tavares, Triple Diamond Illustration
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50],n->3*n^2+2*n+1); # Muniru A Asiru, Oct 07 2018
-
Magma
[3*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Mar 15 2013
-
Maple
seq(coeff(series(n!*(exp(x)*(3*x^2+5*x+1)),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 07 2018
-
Mathematica
Table[3 n^2 + 2 n + 1, {n, 0, 100}] (* Vincenzo Librandi, Mar 15 2013 *) LinearRecurrence[{3,-3,1},{1,6,17},60] (* Harvey P. Dale, Mar 28 2019 *)
-
PARI
{a(n) = 3*n^2 + 2*n + 1}; /* Michael Somos, Aug 03 2006 */
-
PARI
Vec((1+3*x+2*x^2)/(1-3*x+3*x^2-x^3)+O(x^100)) \\ Stefano Spezia, Oct 17 2018
Formula
a(n) = 3n^2+2n+1 = a(n-1)+6n-1 = 2a(n-1)-a(n-2)+6 = 3a(n-1)-3a(n-2)+a(n-3) = A056105(n)+4n = A056106(n)+3n = A056107(n)+2n = A056108(n)+n = A003215(n)-n.
G.f.: (1+3*x+2*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
G.f.: (1 + x) * (1 + 2*x) / (1 - x)^3. - Michael Somos, Feb 04 2012
E.g.f.: exp(x)*(1 + 5*x + 3*x^2). - Stefano Spezia, Oct 06 2018
A056105 First spoke of a hexagonal spiral.
1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257
Offset: 0
Comments
Also the number of (not necessarily maximal) cliques in the n X n grid graph. - Eric W. Weisstein, Nov 29 2017
Examples
The spiral begins: 49--48--47--46--45 / \ 50 28--27--26--25 44 / / \ \ 51 29 13--12--11 24 43 / / / \ \ \ 52 30 14 4---3 10 23 42 67 / / / / \ \ \ \ \ 53 31 15 5 1===2===9==22==41==66==> \ \ \ \ / / / / 54 32 16 6---7---8 21 40 65 \ \ \ / / / 55 33 17--18--19--20 39 64 \ \ / / 56 34--35--36--37--38 63 \ / 57--58--59--60--61--62
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Henry Bottomley, Illustration of initial terms
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- Eric Weisstein's World of Mathematics, Clique
- Eric Weisstein's World of Mathematics, Grid Graph
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n -> 3*n^2-2*n+1); # G. C. Greubel, Dec 02 2018
-
Magma
[3*n^2-2*n+1: n in [0..50]]; // Wesley Ivan Hurt, Jul 06 2014
-
Maple
A056105:=n->3*n^2 - 2*n + 1: seq(A056105(n), n=0..50); # Wesley Ivan Hurt, Jul 06 2014
-
Mathematica
LinearRecurrence[{3, -3, 1}, {1, 2, 9}, 50] (* Harvey P. Dale, Nov 02 2011 *) Table[3 n^2 - 2 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *) CoefficientList[Series[(-1 + x - 6 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
PARI
a(n)=3*n^2-2*n+1 /* Michael Somos, Aug 03 2006 */
-
Sage
[3*n^2-2*n+1 for n in range(50)] # G. C. Greubel, Dec 02 2018
Formula
a(n) = 3*n^2 - 2*n + 1.
a(n) = a(n-1) + 6*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 04 2012
From Robert G. Wilson v, Jul 05 2014: (Start)
Each of the 6 primary spokes or rays has a generating formula as stated here:
1st: 90 degrees A056105 3n^2 - 2n + 1
2nd: 30 degrees A056106 3n^2 - n + 1
3rd: 330 degrees A056107 3n^2 + 1
4th: 270 degrees A056108 3n^2 + n + 1
5th: 210 degrees A056109 3n^2 + 2n + 1
6th: 150 degrees A003215 3n^2 + 3n + 1
Each of the 6 secondary spokes or rays has a generating formula as stated here:
1st: 60 degrees 12n^2 - 27n + 16
2nd: 360 degrees 12n^2 - 25n + 14
3rd: 300 degrees 12n^2 - 23n + 12
4th: 240 degrees 12n^2 - 21n + 10
5th: 180 degrees 12n^2 - 19n + 8
6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1)
(End)
a(n) = 1 + A000567(n). - Omar E. Pol, Apr 26 2017
E.g.f.: (1 + x + 3*x^2)*exp(x). - G. C. Greubel, Dec 02 2018
A184703 T(n,k) is the number of strings of numbers x(i=1..n) in 0..k with sum i*x(i) equal to k*n.
1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 3, 6, 7, 3, 1, 3, 9, 14, 12, 4, 1, 4, 12, 28, 34, 21, 5, 1, 4, 17, 46, 78, 74, 35, 6, 1, 5, 22, 74, 156, 207, 154, 58, 8, 1, 5, 27, 107, 282, 476, 504, 304, 91, 10, 1, 6, 34, 154, 471, 985, 1349, 1169, 580, 142, 12, 1, 6, 41, 208, 744, 1842, 3142, 3571, 2574, 1066, 215, 15
Offset: 1
Comments
T(n,k) is the number of integer lattice points in k*P_n, where P_n is the polytope in R^n defined by the constraints 0 <= x_i <= 1 and Sum_{i=1..n} i x_i = n. Thus for each n, T(n,k) is an Ehrhart quasi-polynomial. - Robert Israel, Dec 21 2022
Examples
Table starts: 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 5 5 6 6 7 2 3 6 9 12 17 22 27 34 41 48 57 2 7 14 28 46 74 107 154 208 278 357 456 3 12 34 78 156 282 471 744 1119 1623 2279 3118 4 21 74 207 476 985 1842 3226 5325 8414 12766 18789 5 35 154 504 1349 3142 6575 12688 22923 39266 64315 101460 6 58 304 1169 3571 9353 21713 46037 90595 167917 295811 499442 8 91 580 2574 8939 26146 67105 155645 332729 665317 1257898 2268061 10 142 1066 5439 21310 69331 195760 495251 1146377 2467215 4994696 9599863 Some solutions for n=5, k=4: 4 4 2 0 1 2 1 0 2 4 0 0 4 0 2 2 1 2 3 1 2 0 2 0 1 1 0 0 0 2 2 1 2 1 4 0 1 2 2 1 4 0 4 0 4 0 2 2 2 1 0 2 3 3 1 3 1 1 2 0 1 4 2 0 0 1 0 2 0 0 1 1 0 2 0 4 0 0 0 2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2113
Programs
-
Maple
S:= proc(n,k,s) option remember; local j; if n = 1 then if s <= k then return 1 else return 0 fi fi; add(procname(n-1,k,s-j*n), j=0..min(s/n,k)) end proc: [seq(seq(S(n,m-n,(m-n)*n),n=1..m-1),m=1..20)]; # Robert Israel, Dec 21 2022
-
Mathematica
S[n_, k_, s_] := S[n, k, s] = Module[{}, If[n == 1, If[s <= k, Return@1, Return@0]]; Sum[S[n - 1, k, s - j*n], {j, 0, Min[s/n, k]}]]; Table[Table[S[n, m - n, (m - n)*n], {n, 1, m - 1}], {m, 1, 20}] // Flatten (* Jean-François Alcover, Aug 21 2023, after Robert Israel *)
A225345 T(n,k) = Number of n X k {-1,1}-arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero, the sum of x(i,j) is zero, and rows are nondecreasing (number of ways to distribute k-across galley oarsmen left-right at n fore-aft positions so that there are no turning moments on the ship).
0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 0, 3, 6, 7, 0, 0, 1, 0, 9, 0, 15, 0, 1, 0, 3, 12, 31, 0, 33, 8, 0, 1, 0, 17, 0, 107, 0, 77, 0, 1, 0, 5, 22, 81, 0, 395, 410, 181, 0, 0, 1, 0, 27, 0, 397, 0, 1525, 0, 443, 0, 1, 0, 5, 34, 171, 0, 2073, 4508, 6095, 0, 1113, 58, 0, 1, 0, 41, 0, 1081, 0
Offset: 1
Comments
Table starts
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....1....0......1.....0.......1.....0........1......0........1
.0...1...0.....3....0......3.....0.......5.....0........5......0........7
.2...3...6.....9...12.....17....22......27....34.......41.....48.......57
.0...7...0....31....0.....81.....0.....171.....0......309......0......509
.0..15...0...107....0....397.....0....1081.....0.....2399......0.....4675
.0..33...0...395....0...2073.....0....7261.....0....19709......0....45385
.8..77.410..1525.4508..11291.25056...50659.95130...168289.283338...457627
.0.181...0..6095....0..63121.....0..364051.....0..1478059......0..4749875
.0.443...0.24893....0.360909.....0.2676331.....0.13280209......0.50435657
Examples
Some solutions for n=4, k=4 .-1.-1.-1..1...-1.-1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1 .-1..1..1..1...-1..1..1..1...-1.-1.-1..1....1..1..1..1....1..1..1..1 .-1..1..1..1...-1.-1.-1.-1...-1.-1.-1..1....1..1..1..1...-1.-1.-1..1 .-1.-1.-1..1...-1..1..1..1...-1..1..1..1...-1.-1.-1.-1...-1.-1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..3132
Crossrefs
Formula
Empirical for row n:
n=1: a(n) = a(n-2);
n=2: a(n) = a(n-2);
n=3: a(n) = a(n-2) +a(n-4) -a(n-6);
n=4: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5);
n=5: a(n) = 3*a(n-2) -2*a(n-4) -2*a(n-6) +3*a(n-8) -a(n-10);
n=6: [order 26, even n];
n=7: [order 42, even n];
n=8: [order 28];
n=9: [order 58, even n];
n=10: [order 90, even n];
n=11: [order 102, even n];
n=12: [order 66].
A229093 The clubs patterns appearing in n X n coins.
0, 0, 1, 2, 4, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0
Comments
On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration for initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Mathematica
CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 08 2013 *) LinearRecurrence[{2,-1,1,-2,1},{0,0,1,2,4,6,9,12,17,22},70] (* Harvey P. Dale, Feb 05 2020 *)
-
PARI
Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
-
PARI
a(n) = ceil((n-1)^2/3) \\ Charles R Greathouse IV, Jan 06 2016
Formula
a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.
G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 07 2013
Extensions
More terms from Colin Barker, Oct 08 2013
A008812 Expansion of (1+x^5)/((1-x)^2*(1-x^5)).
1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 25, 30, 35, 40, 45, 52, 59, 66, 73, 80, 89, 98, 107, 116, 125, 136, 147, 158, 169, 180, 193, 206, 219, 232, 245, 260, 275, 290, 305, 320, 337, 354, 371, 388, 405, 424, 443, 462, 481, 500, 521, 542, 563, 584, 605, 628, 651, 674
Offset: 0
Comments
Number of 0..n arrays of six elements with zero second differences. - R. H. Hardin, Nov 16 2011
Also number of ordered triples (w,x,y) with all terms in {1,...,n+1} and w + 4*x = 5*y. Also the number of 3-tuples (w,x,y) with all terms in {1,...,n+1} and 5*w = 2*x +3*y. - Clark Kimberling, Apr 15 2012 [Corrected by Pontus von Brömssen, Jan 26 2020]
a(n) is also the number of 5 boxes polyomino (zig-zag patterns) packing into (n+3) X (n+3) square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013
Also, number of ordered pairs (x,y) with both terms in {1,...,n+1} and x+4*y divisible by 5; or number of ordered pairs (x,y) with both terms in {1,...,n+1} and 2*x+3*y divisible by 5. - Pontus von Brömssen, Jan 26 2020
Examples
For n = 5 there are 8 0..5 arrays of six elements with zero second differences: [0,0,0,0,0,0], [0,1,2,3,4,5], [1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3,3,3], [4,4,4,4,4,4], [5,4,3,2,1,0], [5,5,5,5,5,5].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Illustration of initial terms
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,8,11];; for n in [8..65] do a[n]:=2*a[n-1]-a[n-2] +a[n-5]-2*a[n-6]+a[n-7]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^5)/((1-x)^2*(1-x^5)) )); // G. C. Greubel, Sep 12 2019 -
Maple
seq(coeff(series((1+x^5)/((1-x)^2*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 12 2019
-
Mathematica
CoefficientList[Series[(1+x^5)/(1-x)^2/(1-x^5),{x,0,65}],x] (* or *) LinearRecurrence[{2,-1,0,0,1,-2,1}, {1,2,3,4,5,8,11}, 65] (* Harvey P. Dale, Apr 17 2015 *)
-
PARI
Vec((1+x^5)/(1-x)^2/(1-x^5)+O(x^65)) \\ Charles R Greathouse IV, Sep 25 2012
-
Sage
def A008812_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^5)/((1-x)^2*(1-x^5))).list() A008812_list(65) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1+x^5)/((1-x)^2*(1-x^5)).
a(n) = 2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7). - R. H. Hardin, Nov 16 2011
Extensions
More terms added by G. C. Greubel, Sep 12 2019
A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
Offset: 0
Comments
Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Daniel Gabric and Joe Sawada, Investigating the discrepancy property of de Bruijn sequences, University of Guelph (Canada, 2020).
- János Pach and Pankaj K. Agarwal, Combinatorial Geometry, p. 220, 1995, Problem 13.10.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[0,1,2,3,4,7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019 -
Maple
f := n->n^2/4+3*n/2+g(n); g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi; seq(f(n), n=-3..50);
-
Mathematica
CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x,0,60}], x] (* G. C. Greubel, Sep 12 2019 *)
-
PARI
concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
-
Sage
def A008811_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list() A008811_list(60) # G. C. Greubel, Sep 12 2019
Formula
G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023
A225310 T(n,k)=Number of nXk -1,1 arrays such that the sum over i=1..n,j=1..k of i*x(i,j) is zero and rows are nondecreasing (ways to put k thrusters pointing east or west at each of n positions 1..n distance from the hinge of a south-pointing gate without turning the gate).
0, 1, 0, 0, 1, 2, 1, 0, 3, 2, 0, 3, 6, 7, 0, 1, 0, 9, 16, 15, 0, 0, 3, 12, 31, 0, 35, 8, 1, 0, 17, 52, 113, 0, 87, 14, 0, 5, 22, 83, 0, 443, 474, 217, 0, 1, 0, 27, 122, 427, 0, 1787, 1576, 547, 0, 0, 5, 34, 175, 0, 2341, 5304, 7445, 0, 1417, 70, 1, 0, 41, 238, 1165, 0, 13333, 26498
Offset: 1
Comments
Table starts
..0....1....0......1.....0.......1......0........1......0.........1.......0
..0....1....0......3.....0.......3......0........5......0.........5.......0
..2....3....6......9....12......17.....22.......27.....34........41......48
..2....7...16.....31....52......83....122......175....238.......317.....410
..0...15....0....113.....0.....427......0.....1165......0......2591.......0
..0...35....0....443.....0....2341......0.....8221......0.....22351.......0
..8...87..474...1787..5304...13333..29638....60007.112790....199669..336342
.14..217.1576...7445.26498...77721.197440...449693.939130...1828785.3360554
..0..547....0..31593.....0..461973......0..3437315......0..17085339.......0
..0.1417....0.136351.....0.2791167......0.26700429......0.162204059.......0
Examples
Some solutions for n=4 k=4 ..1..1..1..1...-1.-1..1..1...-1.-1.-1..1....1..1..1..1...-1..1..1..1 ..1..1..1..1...-1..1..1..1...-1.-1.-1..1...-1.-1.-1.-1...-1.-1..1..1 .-1.-1.-1.-1....1..1..1..1...-1..1..1..1....1..1..1..1...-1..1..1..1 .-1.-1..1..1...-1.-1.-1.-1...-1.-1..1..1...-1.-1.-1..1...-1.-1.-1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for row n:
n=1: a(n) = a(n-2)
n=2: a(n) = a(n-2) +a(n-4) -a(n-6)
n=3: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
n=4: a(n) = a(n-1) +a(n-2) -2*a(n-5) +a(n-8) +a(n-9) -a(n-10)
n=5: [order 18]
n=6: [order 42]
n=7: [order 24]
n=8: [order 36]
Comments
Examples
Links
Crossrefs
Programs
Mathematica