cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.

Original entry on oeis.org

1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0

Author

Clark Kimberling, Jun 01 2012

Keywords

Comments

In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014

Examples

			a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1).
Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ...
a(0) = 1;
a(1) = 1 + 3 = 4;
a(2) = 1 + 3 + 7 = 11;
a(3) = 1 + 3 + 7 + 9 = 20;
a(4) = 1 + 3 + 7 + 9 + 13 = 33;
a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
		

References

  • A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
  • P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[w - x] == Abs[x - y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 50]]   (* A212959 *)
  • PARI
    a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015

Formula

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021

A008810 a(n) = ceiling(n^2/3).

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Keywords

Comments

a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), this sequence (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • Haskell
    a008810 = ceiling . (/ 3) . fromInteger . a000290
    a008810_list = [0,1,2,3,6] ++ zipWith5
                   (\u v w x y -> 2 * u - v + w - 2 * x + y)
       (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list)
       (tail a008810_list) a008810_list
    -- Reinhard Zumkeller, Dec 20 2012
    
  • Magma
    [Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
  • Mathematica
    Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
    
  • Sage
    [ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019

Formula

a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
a(A008585(n)) = A033428(n). - Reinhard Zumkeller, Dec 20 2012
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022

A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
Offset: 0

Keywords

Comments

Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011

Crossrefs

Cf. A129756 (first differences).
Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), this sequence (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[0,1,2,3,4,7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    f := n->n^2/4+3*n/2+g(n);
    g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi;
    seq(f(n), n=-3..50);
  • Mathematica
    CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x,0,60}], x] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008811_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list()
    A008811_list(60) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023

A008813 Expansion of (1+x^6)/((1-x)^2*(1-x^6)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 21, 24, 29, 34, 39, 44, 49, 54, 61, 68, 75, 82, 89, 96, 105, 114, 123, 132, 141, 150, 161, 172, 183, 194, 205, 216, 229, 242, 255, 268, 281, 294, 309, 324, 339, 354, 369, 384, 401, 418, 435, 452, 469, 486, 505, 524, 543, 562
Offset: 0

Keywords

Comments

Number of 0..n arrays of 7 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), this sequence (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,9,12];; for n in [9..70] do a[n]:=2*a[n-1]-a[n-2] +a[n-6]-2*a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^6)/((1-x)^2*(1-x^6)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^6)/((1-x)^2*(1-x^6)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^6)/(1-x)^2/(1-x^6), {x,0,70}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1}, {1,2,3,4,5,6,9,12}, 70] (* Harvey P. Dale, Oct 13 2012 *)
  • PARI
    Vec((1+x^6)/((1-x)^2*(1-x^6)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    def A008813_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^6)/((1-x)^2*(1-x^6))).list()
    A008813_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^6)/((1-x)^2*(1-x^6)).
a(n) = 2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008814 Expansion of (1+x^7)/((1-x)^2*(1-x^7)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28, 33, 38, 43, 48, 53, 58, 63, 70, 77, 84, 91, 98, 105, 112, 121, 130, 139, 148, 157, 166, 175, 186, 197, 208, 219, 230, 241, 252, 265, 278, 291, 304, 317, 330, 343, 358, 373, 388, 403, 418, 433, 448, 465, 482, 499
Offset: 0

Keywords

Comments

Number of 0..n arrays of 8 elements with zero second differences. - R. H. Hardin, Nov 16 2011

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), this sequence (m=7), A008815 (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,10,13];; for n in [10..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^7)/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^7)/((1-x)^2*(1-x^7)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^7)/(1-x)^2/(1-x^7), {x,0,70}], x] (* or *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,10,13}, 70] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    a(n)=(n*(n+2)+[7,11,13,13,11,7,1][n%7+1])/7 \\ Charles R Greathouse IV, Nov 16 2011
    
  • PARI
    a(n)=(n*(n+2)+13-6*(n%7==6))\7  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008814_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^7)/((1-x)^2*(1-x^7))).list()
    A008814_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^7)/((1-x)^2*(1-x^7)).
a(n) = 2*a(n-1) -a(n-2) +a(n-7) -2*a(n-8) +a(n-9). - R. H. Hardin, Nov 16 2011

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008815 Expansion of (1+x^8)/((1-x)^2*(1-x^8)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32, 37, 42, 47, 52, 57, 62, 67, 72, 79, 86, 93, 100, 107, 114, 121, 128, 137, 146, 155, 164, 173, 182, 191, 200, 211, 222, 233, 244, 255, 266, 277, 288, 301, 314, 327, 340, 353, 366, 379, 392, 407, 422
Offset: 0

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), this sequence (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,11,14];; for n in [11..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    I:=[1,2,3,4,5,6,7,8,11,14]; [n le 10 select I[n] else 2*Self(n-1) -Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, May 14 2019
    
  • Maple
    seq(coeff(series((1+x^8)/((1-x)^2*(1-x^8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^8)/(1-x)^2/(1-x^8), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,11,14}, 50] (* Harvey P. Dale, Dec 17 2016 *)
  • PARI
    a(n)=(n*(n+2)+14+4*(n%4-1)*(-1)^(n\4))\8  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^8)/((1-x)^2*(1-x^8))).list()
    A008815_list(50) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = floor( (n*(n+2) + 14 + 4*((n mod 4) - 1)*(-1)^floor(n/4))/8 ). - Tani Akinari, Jul 25 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - Vincenzo Librandi, May 14 2019

A008816 Expansion of (1+x^9)/((1-x)^2*(1-x^9)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 337, 350, 363, 376, 389, 402
Offset: 0

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), this sequence (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,12,15];; for n in [12..70] do a[n]:=2*a[n-1] -a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^9)/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
  • Mathematica
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,12,15}, 70] (* or *) CoefficientList[Series[(1+x^9)/((1-x)^2*(1-x^9)), {x,0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec((1+x^9)/((1-x)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^8)/((1-x)^2*(1-x^8))).list()
    A008815_list(70) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^9)/((1-x)^2*(1-x^9)). - G. C. Greubel, Sep 12 2019

Extensions

More terms added by G. C. Greubel, Sep 12 2019

A008817 Expansion of (1+x^10)/((1-x)^2*(1-x^10)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360
Offset: 0

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), A008815 (m=8), A008816 (m=9), this sequence (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10, 13,16];; for n in [13..80] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^10)/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Sep 12 2019
    
  • Maple
    seq(coeff(series((1+x^10)/((1-x)^2*(1-x^10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^10)/(1-x)^2/(1-x^10), {x,0,80}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,10, 13,16}, 80] (* Harvey P. Dale, Jul 31 2014 *)
  • PARI
    my(x='x+O('x^80)); Vec((1+x^10)/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Sep 12 2019
    
  • Sage
    def A008817_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^10)/((1-x)^2*(1-x^10))).list()
    A008817_list(80) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1+x^10)/((1-x)^2*(1-x^10)).
a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=5, a(5)=6, a(6)=7, a(7)=8, a(8)=9, a(9)=10, a(10)=13, a(11)=16, a(n) = 2*a(n-1) - a(n-2) + a(n-10) - 2*a(n-11) + a(n-12). - Harvey P. Dale, Jul 31 2014

A200329 T(n,k)=Number of 0..k arrays x(0..n+2) of n+3 elements with zero n-1st differences.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 8, 5, 4, 3, 2, 1, 8, 11, 6, 5, 4, 3, 2, 1, 9, 14, 13, 6, 5, 4, 3, 2, 1, 10, 17, 20, 13, 6, 5, 4, 3, 2, 1, 11, 20, 27, 28, 9, 6, 5, 4, 3, 2, 1, 12, 25, 36, 43, 26, 7, 6, 5, 4, 3, 2, 1, 13, 30, 49, 58, 49, 18, 7, 6, 9, 4, 3, 2, 1, 14, 35, 62
Offset: 1

Author

R. H. Hardin Nov 16 2011

Keywords

Comments

Table starts
.1.1.1.1..1..1..1..1...1...1...1...1....1....1....1....1....1....1....1....1
.2.3.4.5..6..7..8..9..10..11..12..13...14...15...16...17...18...19...20...21
.2.3.4.5..8.11.14.17..20..25..30..35...40...45...52...59...66...73...80...89
.2.3.4.5..6.13.20.27..36..49..62..81..100..119..146..177..208..247..286..329
.2.3.4.5..6.13.28.43..58..87.116.159..206..271..350..453..566..689..828.1007
.2.3.4.5..6..9.26.49..76.117.174.257..348..505..704..965.1290.1655.2080
.2.3.4.5..6..7.18.43..78.131.224.363..526..833.1236.1803.2496.3415
.2.3.4.5..6..7.16.49.100.193.322.517..764.1281.2048.3195.4686
.2.3.4.5..6.17.30.61.106.173.328.683.1204.2075.3450.5525
.2.3.4.9.16.25.34.61.108.193.370.881.1728.3285.5892

Examples

			Some solutions for n=9 k=9
..9....0....5....5....3....3....0....9....8....5....2....7....5....7....0....5
..9....8....5....5....3....4....0....0....9....2....9....7....5....6....5....8
..9....6....5....8....3....3....0....6....5....5....5....7....2....7....6....2
..9....2....5....5....3....5....0....5....2....9....2....7....5....5....4....1
..9....0....5....1....3....7....1....1....1....9....2....6....9....3....3....5
..9....1....5....1....3....7....3....0....1....5....3....4....9....3....4....9
..9....4....5....5....3....6....5....2....1....1....3....2....5....4....5....9
..9....7....5....9....3....6....6....3....1....1....2....1....1....4....4....5
..9....8....5....9....3....7....6....1....2....5....2....1....1....3....2....1
..9....6....5....5....3....6....6....0....5....8....5....1....5....4....3....2
..9....2....5....2....3....1....6....6....9....5....9....1....8....9....8....8
..9....0....5....5....3....3....0....9....8....5....2....7....5....7....0....5
		

Crossrefs

Row 3 is A008812
Showing 1-10 of 12 results. Next