A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
Keywords
A212959 Number of (w,x,y) such that w,x,y are all in {0,...,n} and |w-x| = |x-y|.
1, 4, 11, 20, 33, 48, 67, 88, 113, 140, 171, 204, 241, 280, 323, 368, 417, 468, 523, 580, 641, 704, 771, 840, 913, 988, 1067, 1148, 1233, 1320, 1411, 1504, 1601, 1700, 1803, 1908, 2017, 2128, 2243, 2360, 2481, 2604, 2731, 2860, 2993, 3128, 3267
Offset: 0
Comments
In the following guide to related sequences: M=max(x,y,z), m=min(x,y,z), and R=range=M-m. In some cases, it is an offset of the listed sequence which fits the conditions shown for w,x,y. Each sequence satisfies a linear recurrence relation, some of which are identified in the list by the following code (signature):
A: 2, 0, -2, 1, i.e., a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4);
B: 3, -2, -2, 3, -1;
C: 4, -6, 4, -1;
D: 1, 2, -2, -1, 1;
E: 2, 1, -4, 1, 2, -1;
F: 2, -1, 1, -2, 1;
G: 2, -1, 0, 1, -2, 1;
H: 2, -1, 2, -4, 2, -1, 2, -1;
I: 3, -3, 2, -3, 3, -1;
J: 4, -7, 8, -7, 4, -1.
...
A212959 ... |w-x|=|x-y| ...... recurrence type A
A212960 ... |w-x| != |x-y| ................... B
A212683 ... |w-x| < |x-y| .................... B
A212684 ... |w-x| >= |x-y| ................... B
A212963 ... see entry for definition ......... B
A212964 ... |w-x| < |x-y| < |y-w| ............ B
A006331 ... |w-x| < y ........................ C
A005900 ... |w-x| <= y ....................... C
A212965 ... w = R ............................ D
A212966 ... 2*w = R
A212967 ... w < R ............................ E
A212968 ... w >= R ........................... E
A077043 ... w = x > R ........................ A
A212969 ... w != x and x > R ................. E
A212970 ... w != x and x < R ................. E
A055998 ... w = x + y - 1
A011934 ... w < floor((x+y)/2) ............... B
A182260 ... w > floor((x+y)/2) ............... B
A055232 ... w <= floor((x+y)/2) .............. B
A011934 ... w >= floor((x+y)/2) .............. B
A212971 ... w < floor((x+y)/3) ............... B
A212972 ... w >= floor((x+y)/3) .............. B
A212973 ... w <= floor((x+y)/3) .............. B
A212974 ... w > floor((x+y)/3) ............... B
A212975 ... R is even ........................ E
A212976 ... R is odd ......................... E
A212978 ... R = 2*n - w - x
A212979 ... R = average{w,x,y}
A212980 ... w < x + y and x < y .............. B
A212981 ... w <= x+y and x < y ............... B
A212982 ... w < x + y and x <= y ............. B
A212983 ... w <= x + y and x <= y ............ B
A002623 ... w >= x + y and x <= y ............ B
A087811 ... w = 2*x + y ...................... A
A008805 ... w = 2*x + 2*y .................... D
A000982 ... 2*w = x + y ...................... F
A001318 ... 2*w = 2*x + y .................... F
A001840 ... w = 3*x + y
A212984 ... 3*w = x + y
A212985 ... 3*w = 3*x + y
A001399 ... w = 2*x + 3*y
A212986 ... 2*w = 3*x + y
A008810 ... 3*x = 2*x + y .................... F
A212987 ... 3*w = 2*x + 2*y
A001972 ... w = 4*x + y ...................... G
A212988 ... 4*w = x + y ...................... G
A212989 ... 4*w = 4*x + y
A008812 ... 5*w = 2*x + 3*y
A016061 ... n < w + x + y <= 2*n ............. C
A000292 ... w + x + y <=n .................... C
A000292 ... 2*n < w + x + y <= 3*n ........... C
A212977 ... n/2 < w + x + y <= n
A143785 ... w < R < x ........................ E
A005996 ... w < R <= x ....................... E
A128624 ... w <= R <= x ...................... E
A213041 ... R = 2*|w - x| .................... A
A213045 ... R < 2*|w - x| .................... B
A087035 ... R >= 2*|w - x| ................... B
A213388 ... R <= 2*|w - x| ................... B
A171218 ... M < 2*m .......................... B
A213389 ... R < 2|w - x| ..................... E
A213390 ... M >= 2*m ......................... E
A213391 ... 2*M < 3*m ........................ H
A213392 ... 2*M >= 3*m ....................... H
A213393 ... 2*M > 3*m ........................ H
A213391 ... 2*M <= 3*m ....................... H
A047838 ... w = |x + y - w| .................. A
A213396 ... 2*w < |x + y - w| ................ I
A213397 ... 2*w >= |x + y - w| ............... I
A213400 ... w < R < 2*w
A069894 ... min(|w-x|,|x-y|) = 1
A000384 ... max(|w-x|,|x-y|) = |w-y|
A213395 ... max(|w-x|,|x-y|) = w
A213398 ... min(|w-x|,|x-y|) = x ............. A
A213399 ... max(|w-x|,|x-y|) = x ............. D
A213479 ... max(|w-x|,|x-y|) = w+x+y ......... D
A213480 ... max(|w-x|,|x-y|) != w+x+y ........ E
A006918 ... |w-x| + |x-y| > w+x+y ............ E
A213481 ... |w-x| + |x-y| <= w+x+y ........... E
A213482 ... |w-x| + |x-y| < w+x+y ............ E
A213483 ... |w-x| + |x-y| >= w+x+y ........... E
A213484 ... |w-x|+|x-y|+|y-w| = w+x+y
A213485 ... |w-x|+|x-y|+|y-w| != w+x+y ....... J
A213486 ... |w-x|+|x-y|+|y-w| > w+x+y ........ J
A213487 ... |w-x|+|x-y|+|y-w| >= w+x+y ....... J
A213488 ... |w-x|+|x-y|+|y-w| < w+x+y ........ J
A213489 ... |w-x|+|x-y|+|y-w| <= w+x+y ....... J
A213490 ... w,x,y,|w-x|,|x-y| distinct
A213491 ... w,x,y,|w-x|,|x-y| not distinct
A213493 ... w,x,y,|w-x|,|x-y|,|w-y| distinct
A213495 ... w = min(|w-x|,|x-y|,|w-y|)
A213492 ... w != min(|w-x|,|x-y|,|w-y|)
A213496 ... x != max(|w-x|,|x-y|)
A213498 ... w != max(|w-x|,|x-y|,|w-y|)
A213497 ... w = min(|w-x|,|x-y|)
A213499 ... w != min(|w-x|,|x-y|)
A213501 ... w != max(|w-x|,|x-y|)
A213502 ... x != min(|w-x|,|x-y|)
...
A211795 includes a guide for sequences that count 4-tuples (w,x,y,z) having all terms in {0,...,n} and satisfying selected properties. Some of the sequences indexed at A211795 satisfy recurrences that are represented in the above list.
Partial sums of the numbers congruent to {1,3} mod 6 (see A047241). - Philippe Deléham, Mar 16 2014
Examples
a(1)=4 counts these (x,y,z): (0,0,0), (1,1,1), (0,1,0), (1,0,1). Numbers congruent to {1, 3} mod 6: 1, 3, 7, 9, 13, 15, 19, ... a(0) = 1; a(1) = 1 + 3 = 4; a(2) = 1 + 3 + 7 = 11; a(3) = 1 + 3 + 7 + 9 = 20; a(4) = 1 + 3 + 7 + 9 + 13 = 33; a(5) = 1 + 3 + 7 + 9 + 13 + 15 = 48; etc. - _Philippe Deléham_, Mar 16 2014
References
- A. Barvinok, Lattice Points and Lattice Polytopes, Chapter 7 in Handbook of Discrete and Computational Geometry, CRC Press, 1997, 133-152.
- P. Gritzmann and J. M. Wills, Lattice Points, Chapter 3.2 in Handbook of Convex Geometry, vol. B, North-Holland, 1993, 765-797.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] == Abs[x - y], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 50]] (* A212959 *)
-
PARI
a(n)=(6*n^2+8*n+3)\/4 \\ Charles R Greathouse IV, Jul 28 2015
Formula
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1+2*x+3*x^2)/((1+x)*(1-x)^3).
a(n) + A212960(n) = (n+1)^3.
a(n) = (6*n^2 + 8*n + 3 + (-1)^n)/4. - Luce ETIENNE, Apr 05 2014
a(n) = 2*A069905(3*(n+1)+2) - 3*(n+1). - Ayoub Saber Rguez, Aug 31 2021
A008810 a(n) = ceiling(n^2/3).
0, 1, 2, 3, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0
Comments
a(n+1) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 3*w = 2*x + y. - Clark Kimberling, Jun 04 2012
a(n) is also the number of L-shapes (3-cell polyominoes) packing into an n X n square. See illustration in links. - Kival Ngaokrajang, Nov 10 2013
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, number of red blocks in Fig 2.5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- S. Lafortune, A. Ramani, B. Grammaticos, Y. Ohta and K.M. Tamizhmani, Blending two discrete integrability criteria: ..., arXiv:nlin/0104020 [nlin.SI], 2001.
- Kival Ngaokrajang, Illustration of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Programs
-
Haskell
a008810 = ceiling . (/ 3) . fromInteger . a000290 a008810_list = [0,1,2,3,6] ++ zipWith5 (\u v w x y -> 2 * u - v + w - 2 * x + y) (drop 4 a008810_list) (drop 3 a008810_list) (drop 2 a008810_list) (tail a008810_list) a008810_list -- Reinhard Zumkeller, Dec 20 2012
-
Magma
[Ceiling(n^2/3): n in [0..60]]; // G. C. Greubel, Sep 12 2019
-
Maple
seq(ceil(n^2/3), n=0..60); # G. C. Greubel, Sep 12 2019
-
Mathematica
Ceiling[Range[0,60]^2/3] (* Vladimir Joseph Stephan Orlovsky, Mar 15 2011 *) LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,6},60] (* Harvey P. Dale, Jun 20 2011 *)
-
PARI
a(n)=ceil(n^2/3) /* Michael Somos, Aug 03 2006 */
-
Sage
[ceil(n^2/3) for n in (0..60)] # G. C. Greubel, Sep 12 2019
Formula
a(-n) = a(n) = ceiling(n^2/3).
G.f.: x*(1 + x^3)/((1 - x)^2*(1 - x^3)) = x*(1 - x^6)/((1 - x)*(1 - x^3))^2.
From Michael Somos, Aug 03 2006: (Start)
Euler transform of length 6 sequence [ 2, 0, 2, 0, 0, -1].
a(3n-1) = A056105(n).
a(3n+1) = A056109(n). (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4. - Harvey P. Dale, Jun 20 2011
9*a(n) = 4 + 3*n^2 - 2*A099837(n+3). - R. J. Mathar, May 02 2013
a(n) = n^2 - 2*A000212(n). - Wesley Ivan Hurt, Jul 07 2013
Sum_{n>=1} 1/a(n) = Pi^2/18 + sqrt(2)*Pi*sinh(2*sqrt(2)*Pi/3)/(1+2*cosh(2*sqrt(2)*Pi/3)). - Amiram Eldar, Aug 13 2022
E.g.f.: (exp(x)*(4 + 3*x*(1 + x)) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 28 2022
A008811 Expansion of x*(1+x^4)/((1-x)^2*(1-x^4)).
0, 1, 2, 3, 4, 7, 10, 13, 16, 21, 26, 31, 36, 43, 50, 57, 64, 73, 82, 91, 100, 111, 122, 133, 144, 157, 170, 183, 196, 211, 226, 241, 256, 273, 290, 307, 324, 343, 362, 381, 400, 421, 442, 463, 484, 507, 530, 553, 576, 601, 626, 651, 676, 703, 730, 757, 784, 813
Offset: 0
Comments
Number of 0..n-1 arrays of 5 elements with zero 2nd differences. - R. H. Hardin, Nov 15 2011
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Daniel Gabric and Joe Sawada, Investigating the discrepancy property of de Bruijn sequences, University of Guelph (Canada, 2020).
- János Pach and Pankaj K. Agarwal, Combinatorial Geometry, p. 220, 1995, Problem 13.10.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[0,1,2,3,4,7];; for n in [7..60] do a[n]:=2*a[n-1]-a[n-2] +a[n-4]-2*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1+x^4)/((1-x)^2*(1-x^4)) )); // G. C. Greubel, Sep 12 2019 -
Maple
f := n->n^2/4+3*n/2+g(n); g := n->if n mod 2 = 0 then 3 elif n mod 4 = 1 then 9/4 else 13/4; fi; seq(f(n), n=-3..50);
-
Mathematica
CoefficientList[Series[x*(1+x^4)/((1-x)^2*(1-x^4)), {x,0,60}], x] (* G. C. Greubel, Sep 12 2019 *)
-
PARI
concat([0], Vec(x*(1+x^4)/((1-x)^2*(1-x^4))+O(x^60))) \\ Charles R Greathouse IV, Sep 26 2012, modified by G. C. Greubel, Sep 12 2019
-
Sage
def A008811_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x*(1+x^4)/((1-x)^2*(1-x^4))).list() A008811_list(60) # G. C. Greubel, Sep 12 2019
Formula
G.f.: x*(1+x^4)/((1-x)^2*(1-x^4)).
a(n) = 2*a(n-1) -a(n-2) +a(n-4) -2*a(n-5) +a(n-6). - R. H. Hardin, Nov 15 2011
a(n) = (-2*(1+(-1)^n)*(-1)^floor(n/2) + 2*n^2 + 5 - (-1)^n)/8. - Tani Akinari, Jul 24 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x) - 2*cos(x))/4. - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/2)*Pi/4 + tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - Amiram Eldar, Aug 25 2022
a(n) = 2*floor((n^2 + 4)/8) + (n mod 2). - Ridouane Oudra, Sep 08 2023
A008813 Expansion of (1+x^6)/((1-x)^2*(1-x^6)).
1, 2, 3, 4, 5, 6, 9, 12, 15, 18, 21, 24, 29, 34, 39, 44, 49, 54, 61, 68, 75, 82, 89, 96, 105, 114, 123, 132, 141, 150, 161, 172, 183, 194, 205, 216, 229, 242, 255, 268, 281, 294, 309, 324, 339, 354, 369, 384, 401, 418, 435, 452, 469, 486, 505, 524, 543, 562
Offset: 0
Comments
Number of 0..n arrays of 7 elements with zero second differences. - R. H. Hardin, Nov 16 2011
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,6,9,12];; for n in [9..70] do a[n]:=2*a[n-1]-a[n-2] +a[n-6]-2*a[n-7]+a[n-8]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^6)/((1-x)^2*(1-x^6)) )); // G. C. Greubel, Sep 12 2019 -
Maple
seq(coeff(series((1+x^6)/((1-x)^2*(1-x^6)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
-
Mathematica
CoefficientList[Series[(1+x^6)/(1-x)^2/(1-x^6), {x,0,70}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,1,-2,1}, {1,2,3,4,5,6,9,12}, 70] (* Harvey P. Dale, Oct 13 2012 *)
-
PARI
Vec((1+x^6)/((1-x)^2*(1-x^6)) +O(x^70)) \\ Charles R Greathouse IV, Sep 26 2012
-
Sage
def A008813_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^6)/((1-x)^2*(1-x^6))).list() A008813_list(70) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1+x^6)/((1-x)^2*(1-x^6)).
a(n) = 2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8). - R. H. Hardin, Nov 16 2011
Extensions
More terms added by G. C. Greubel, Sep 12 2019
A008814 Expansion of (1+x^7)/((1-x)^2*(1-x^7)).
1, 2, 3, 4, 5, 6, 7, 10, 13, 16, 19, 22, 25, 28, 33, 38, 43, 48, 53, 58, 63, 70, 77, 84, 91, 98, 105, 112, 121, 130, 139, 148, 157, 166, 175, 186, 197, 208, 219, 230, 241, 252, 265, 278, 291, 304, 317, 330, 343, 358, 373, 388, 403, 418, 433, 448, 465, 482, 499
Offset: 0
Comments
Number of 0..n arrays of 8 elements with zero second differences. - R. H. Hardin, Nov 16 2011
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,6,7,10,13];; for n in [10..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-7]-2*a[n-8]+a[n-9]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^7)/((1-x)^2*(1-x^7)) )); // G. C. Greubel, Sep 12 2019 -
Maple
seq(coeff(series((1+x^7)/((1-x)^2*(1-x^7)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 12 2019
-
Mathematica
CoefficientList[Series[(1+x^7)/(1-x)^2/(1-x^7), {x,0,70}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,10,13}, 70] (* Harvey P. Dale, Dec 18 2012 *)
-
PARI
a(n)=(n*(n+2)+[7,11,13,13,11,7,1][n%7+1])/7 \\ Charles R Greathouse IV, Nov 16 2011
-
PARI
a(n)=(n*(n+2)+13-6*(n%7==6))\7 \\ Tani Akinari, Jul 25 2013
-
Sage
def A008814_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^7)/((1-x)^2*(1-x^7))).list() A008814_list(70) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1+x^7)/((1-x)^2*(1-x^7)).
a(n) = 2*a(n-1) -a(n-2) +a(n-7) -2*a(n-8) +a(n-9). - R. H. Hardin, Nov 16 2011
Extensions
More terms added by G. C. Greubel, Sep 12 2019
A008815 Expansion of (1+x^8)/((1-x)^2*(1-x^8)).
1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32, 37, 42, 47, 52, 57, 62, 67, 72, 79, 86, 93, 100, 107, 114, 121, 128, 137, 146, 155, 164, 173, 182, 191, 200, 211, 222, 233, 244, 255, 266, 277, 288, 301, 314, 327, 340, 353, 366, 379, 392, 407, 422
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,6,7,8,11,14];; for n in [11..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
I:=[1,2,3,4,5,6,7,8,11,14]; [n le 10 select I[n] else 2*Self(n-1) -Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, May 14 2019
-
Maple
seq(coeff(series((1+x^8)/((1-x)^2*(1-x^8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
-
Mathematica
CoefficientList[Series[(1+x^8)/(1-x)^2/(1-x^8), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,11,14}, 50] (* Harvey P. Dale, Dec 17 2016 *)
-
PARI
a(n)=(n*(n+2)+14+4*(n%4-1)*(-1)^(n\4))\8 \\ Tani Akinari, Jul 25 2013
-
Sage
def A008815_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^8)/((1-x)^2*(1-x^8))).list() A008815_list(50) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = floor( (n*(n+2) + 14 + 4*((n mod 4) - 1)*(-1)^floor(n/4))/8 ). - Tani Akinari, Jul 25 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - Vincenzo Librandi, May 14 2019
A008816 Expansion of (1+x^9)/((1-x)^2*(1-x^9)).
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 236, 247, 258, 269, 280, 291, 302, 313, 324, 337, 350, 363, 376, 389, 402
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,6,7,8,9,12,15];; for n in [12..70] do a[n]:=2*a[n-1] -a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^9)/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 12 2019 -
Maple
seq(coeff(series((1+x^9)/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
-
Mathematica
LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,12,15}, 70] (* or *) CoefficientList[Series[(1+x^9)/((1-x)^2*(1-x^9)), {x,0, 70}], x] (* G. C. Greubel, Sep 12 2019 *)
-
PARI
my(x='x+O('x^70)); Vec((1+x^9)/((1-x)^2*(1-x^9))) \\ G. C. Greubel, Sep 12 2019
-
Sage
def A008815_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^8)/((1-x)^2*(1-x^8))).list() A008815_list(70) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1+x^9)/((1-x)^2*(1-x^9)). - G. C. Greubel, Sep 12 2019
Extensions
More terms added by G. C. Greubel, Sep 12 2019
A008817 Expansion of (1+x^10)/((1-x)^2*(1-x^10)).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 261, 272, 283, 294, 305, 316, 327, 338, 349, 360
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=[1,2,3,4,5,6,7,8,9,10, 13,16];; for n in [13..80] do a[n]:=2*a[n-1]-a[n-2]+a[n-10]-2*a[n-11]+a[n-12]; od; a; # G. C. Greubel, Sep 12 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^10)/((1-x)^2*(1-x^10)) )); // G. C. Greubel, Sep 12 2019 -
Maple
seq(coeff(series((1+x^10)/((1-x)^2*(1-x^10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Sep 12 2019
-
Mathematica
CoefficientList[Series[(1+x^10)/(1-x)^2/(1-x^10), {x,0,80}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,9,10, 13,16}, 80] (* Harvey P. Dale, Jul 31 2014 *)
-
PARI
my(x='x+O('x^80)); Vec((1+x^10)/((1-x)^2*(1-x^10))) \\ G. C. Greubel, Sep 12 2019
-
Sage
def A008817_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^10)/((1-x)^2*(1-x^10))).list() A008817_list(80) # G. C. Greubel, Sep 12 2019
Formula
G.f.: (1+x^10)/((1-x)^2*(1-x^10)).
a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=5, a(5)=6, a(6)=7, a(7)=8, a(8)=9, a(9)=10, a(10)=13, a(11)=16, a(n) = 2*a(n-1) - a(n-2) + a(n-10) - 2*a(n-11) + a(n-12). - Harvey P. Dale, Jul 31 2014
A200329 T(n,k)=Number of 0..k arrays x(0..n+2) of n+3 elements with zero n-1st differences.
1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 8, 5, 4, 3, 2, 1, 8, 11, 6, 5, 4, 3, 2, 1, 9, 14, 13, 6, 5, 4, 3, 2, 1, 10, 17, 20, 13, 6, 5, 4, 3, 2, 1, 11, 20, 27, 28, 9, 6, 5, 4, 3, 2, 1, 12, 25, 36, 43, 26, 7, 6, 5, 4, 3, 2, 1, 13, 30, 49, 58, 49, 18, 7, 6, 9, 4, 3, 2, 1, 14, 35, 62
Offset: 1
Comments
Table starts
.1.1.1.1..1..1..1..1...1...1...1...1....1....1....1....1....1....1....1....1
.2.3.4.5..6..7..8..9..10..11..12..13...14...15...16...17...18...19...20...21
.2.3.4.5..8.11.14.17..20..25..30..35...40...45...52...59...66...73...80...89
.2.3.4.5..6.13.20.27..36..49..62..81..100..119..146..177..208..247..286..329
.2.3.4.5..6.13.28.43..58..87.116.159..206..271..350..453..566..689..828.1007
.2.3.4.5..6..9.26.49..76.117.174.257..348..505..704..965.1290.1655.2080
.2.3.4.5..6..7.18.43..78.131.224.363..526..833.1236.1803.2496.3415
.2.3.4.5..6..7.16.49.100.193.322.517..764.1281.2048.3195.4686
.2.3.4.5..6.17.30.61.106.173.328.683.1204.2075.3450.5525
.2.3.4.9.16.25.34.61.108.193.370.881.1728.3285.5892
Examples
Some solutions for n=9 k=9 ..9....0....5....5....3....3....0....9....8....5....2....7....5....7....0....5 ..9....8....5....5....3....4....0....0....9....2....9....7....5....6....5....8 ..9....6....5....8....3....3....0....6....5....5....5....7....2....7....6....2 ..9....2....5....5....3....5....0....5....2....9....2....7....5....5....4....1 ..9....0....5....1....3....7....1....1....1....9....2....6....9....3....3....5 ..9....1....5....1....3....7....3....0....1....5....3....4....9....3....4....9 ..9....4....5....5....3....6....5....2....1....1....3....2....5....4....5....9 ..9....7....5....9....3....6....6....3....1....1....2....1....1....4....4....5 ..9....8....5....9....3....7....6....1....2....5....2....1....1....3....2....1 ..9....6....5....5....3....6....6....0....5....8....5....1....5....4....3....2 ..9....2....5....2....3....1....6....6....9....5....9....1....8....9....8....8 ..9....0....5....5....3....3....0....9....8....5....2....7....5....7....0....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..291
Crossrefs
Row 3 is A008812
Comments
Examples
Links
Crossrefs
Programs
Mathematica