cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A141222 Expansion of -1/(2*x) + (2*x-1)^2/(2*x*(1-4x)^(3/2)).

Original entry on oeis.org

1, 5, 22, 95, 406, 1722, 7260, 30459, 127270, 529958, 2200276, 9111830, 37650172, 155266100, 639191160, 2627302995, 10784089350, 44208873390, 181025067300, 740483276610, 3026059513620, 12355464845100
Offset: 0

Views

Author

Paul Barry, Jun 14 2008

Keywords

Comments

Apply Riordan array (1/sqrt(1-4x), xc(x)) to A131056, c(x) the g.f. of A000108.
Apply Riordan array (c(x)/sqrt(1-4*x), x*c(x)^2) to A131055.
Hankel transform appears to be (-1)^n*A085046(n).
Coefficients T(2*n+1,n) of triangle A103450. [Emanuele Munarini, Jun 01 2012, corrected by Werner Schulte, Nov 27 2021]

Programs

  • Mathematica
    Table[((1+3*n+n^2)*Binomial[2*n, n])/(n+1),{n,0,20}] (* Vaclav Kotesovec, Feb 13 2014 *)
    CoefficientList[Series[-1/(2*x)+(2*x-1)^2/(2*x*(1-4x)^(3/2)),{x,0,20}],x] (* Vaclav Kotesovec, Feb 13 2014 *)
    a[n_] := (1 + 3 n + n^2) CatalanNumber[n];
    Table[a[n], {n, 0, 21}] (* Peter Luschny, Nov 28 2021 *)
  • Maxima
    a(n):=sum(binomial(2*n,k)*binomial(n+1,2*n-k),k,0,n); makelist(a(n),n,0,40); /* Emanuele Munarini, Jun 01 2012 */

Formula

a(n) = Sum_{k=0..n} (1 + (k+1)*2^(k-1) - 0^k/2)*C(2n-k,n-k); a(n) = Sum_{k=0..n} C(2n,k)*C(n+1,2n-k).
Equals the Narayana transform (A001263) of integer squares. - Gary W. Adamson, Jul 29 2011
Conjecture: (n+1)*a(n) + 2*(-3*n-1)*a(n-1) + 4*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
From Vaclav Kotesovec, Feb 13 2014: (Start)
G.f.: -1/(2*x) + (2*x-1)^2/(2*x*(1-4x)^(3/2)).
a(n) = (1 + 3*n + n^2) * C(2*n,n) / (n+1).
Recurrence: (n+1)*(n^2 + n - 1)*a(n) = 2*(2*n-1)*(n^2 + 3*n + 1)*a(n-1).
(End)

Extensions

Name of the sequence corrected by Vaclav Kotesovec, Feb 13 2014

A255840 a(n) = (4*n^2 - 4*n + 1 - (-1)^n)/2.

Original entry on oeis.org

0, 1, 4, 13, 24, 41, 60, 85, 112, 145, 180, 221, 264, 313, 364, 421, 480, 545, 612, 685, 760, 841, 924, 1013, 1104, 1201, 1300, 1405, 1512, 1625, 1740, 1861, 1984, 2113, 2244, 2381, 2520, 2665, 2812, 2965, 3120, 3281, 3444, 3613, 3784, 3961, 4140, 4325, 4512
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 07 2015

Keywords

Comments

Take an n X n square grid and add unit squares along each side except for the corners --> do this repeatedly along each side with the same restriction until no squares can be added. a(n) is the total area of each figure. The perimeter, P, of each figure is given by P(n) = 4*A042963(n), n>0 (see example).
For n>0, partial sums of a(n) are in A056640.

Examples

			                                                                 _
                                                               _|_|_
                            _              _ _               _|_|_|_|_
                          _|_|_          _|_|_|_           _|_|_|_|_|_|_
              _ _       _|_|_|_|_      _|_|_|_|_|_       _|_|_|_|_|_|_|_|_
    _        |_|_|     |_|_|_|_|_|    |_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
   |_|       |_|_|       |_|_|_|      |_|_|_|_|_|_|       |_|_|_|_|_|_|_|
                           |_|          |_|_|_|_|           |_|_|_|_|_|
                                          |_|_|               |_|_|_|
                                                                |_|
   n=1        n=2          n=3             n=4                  n=5
		

Crossrefs

Cf. A000290 (squares), A002620 (quarter-squares), A042963.

Programs

  • Magma
    [(4*n^2 - 4*n + 1 - (-1)^n)/2 : n in [0..100]];
    
  • Maple
    A255840:=n->(4*n^2 - 4*n + 1 - (-1)^n)/2: seq(A255840(n), n=0..100);
  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 5 x^2)/((1 + x) (1 - x)^3), {x, 0, 50}], x]
  • PARI
    vector(100,n,(4*(n-1)^2 - 4*(n-1) + 1 + (-1)^n)/2) \\ Derek Orr, Mar 09 2015

Formula

G.f.: x*(1+2*x+5*x^2)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = A000290(n) + 4*A002620(n).
a(n) - a(n-1) = A047471(n). - Wesley Ivan Hurt, Apr 28 2017

A302488 Total domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 72, 81, 90, 99, 110, 121, 132, 143, 156, 169, 182, 195, 210, 225, 240, 255, 272, 289, 306, 323, 342, 361, 380, 399, 420, 441, 462, 483, 506, 529, 552, 575, 600, 625, 650, 675, 702, 729, 756, 783, 812, 841, 870, 899, 930
Offset: 0

Views

Author

Eric W. Weisstein, Apr 08 2018

Keywords

Comments

Extended to a(0) and a(1) using the formula/recurrence. The total domination number of the 1 X 1 grid graph is undefined.

Crossrefs

Main diagonal of A300358.
The four quadrasections are A002943, A016754, A002939(n+1), A000466(n+1).
Bisections are A002378 and A085046.
Cf. A303142.

Programs

  • Magma
    R:=RealField(); [Round(((-1)^n + 2*n*(n + 2) + 4*Sin(n*Pi(R)/2) - 1)/8): n in [0..30]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(-1 + (-1)^n + 2 n (2 + n) + 4 Sin[n Pi/2])/8, {n, 0, 20}]
    LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 1, 2, 3, 6, 9}, 20]
    CoefficientList[Series[x (-1 - 2 x^3 + x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)), {x, 0, 20}], x]
  • PARI
    for(n=0,30, print1(round(((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8), ", ")) \\ G. C. Greubel, Apr 09 2018
    
  • PARI
    a(n)=my(m=n\4); (2*m+1)*(2*m + n%4) \\ Andrew Howroyd, Aug 17 2025
    

Formula

a(n) = ((-1)^n + 2*n*(n + 2) + 4*sin(n*Pi/2) - 1)/8.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6).
G.f.: x*(1 + 2*x^3 - x^4)/((1 - x)^3*(1 + x + x^2 + x^3)).
a(4*m + r) = (2*m + 1)*(2*m + r) for 0 <= r < 4. - Charles Kusniec, Aug 16 2025
From Amiram Eldar, Aug 26 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 + 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/8 - 1/2. (End)

Extensions

a(0)=0 prepended and offset corrected by Andrew Howroyd, Aug 17 2025

A255876 a(n) = (4*n^2 + 4*n - 3 - 3*(-1)^n)/2.

Original entry on oeis.org

4, 9, 24, 37, 60, 81, 112, 141, 180, 217, 264, 309, 364, 417, 480, 541, 612, 681, 760, 837, 924, 1009, 1104, 1197, 1300, 1401, 1512, 1621, 1740, 1857, 1984, 2109, 2244, 2377, 2520, 2661, 2812, 2961, 3120, 3277, 3444, 3609, 3784, 3957, 4140, 4321, 4512, 4701
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 08 2015

Keywords

Comments

Take an n X n square grid and add unit squares along each side except for the corners --> do this repeatedly along each side with the same restriction until no squares can be added. a(n) gives the number of vertices in each figure (see example and cf. A255840).

Examples

			                                                                 _
                                                               _|_|_
                            _              _ _               _|_|_|_|_
                          _|_|_          _|_|_|_           _|_|_|_|_|_|_
              _ _       _|_|_|_|_      _|_|_|_|_|_       _|_|_|_|_|_|_|_|_
    _        |_|_|     |_|_|_|_|_|    |_|_|_|_|_|_|     |_|_|_|_|_|_|_|_|_|
   |_|       |_|_|       |_|_|_|      |_|_|_|_|_|_|       |_|_|_|_|_|_|_|
                           |_|          |_|_|_|_|           |_|_|_|_|_|
                                          |_|_|               |_|_|_|
                                                                |_|
   n=1        n=2          n=3             n=4                  n=5
		

Crossrefs

Cf. A000290 (squares), A085046, A198442, A255840.

Programs

  • Magma
    [(4*n^2 + 4*n - 3 - 3*(-1)^n)/2 : n in [1..50]];
    
  • Maple
    A255876:=n->(4*n^2 + 4*n - 3 - 3*(-1)^n)/2: seq(A255876(n), n=1..50);
  • Mathematica
    CoefficientList[Series[(3 x^3 - 6 x^2 - x - 4)/((x + 1) (x - 1)^3), {x, 0, 50}], x]
    LinearRecurrence[{2,0,-2,1},{4,9,24,37},60] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    vector(100,n,(4*n^2 + 4*n - 3 - 3*(-1)^n)/2) \\ Derek Orr, Mar 09 2015

Formula

G.f.: x*(3*x^3 - 6*x^2 - x - 4)/((x + 1)*(x - 1)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = A000290(n+1) + 4*A198442(n).

A304487 a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n) mod 2))/6.

Original entry on oeis.org

1, 4, 15, 36, 73, 128, 207, 312, 449, 620, 831, 1084, 1385, 1736, 2143, 2608, 3137, 3732, 4399, 5140, 5961, 6864, 7855, 8936, 10113, 11388, 12767, 14252, 15849, 17560, 19391, 21344, 23425, 25636, 27983, 30468, 33097, 35872, 38799, 41880, 45121, 48524, 52095
Offset: 1

Views

Author

Stefano Spezia, Aug 17 2018

Keywords

Comments

a(n) is the trace of an n X n matrix A in which the entries are 1 through n^2, spiraling inward starting with 1 in the (1,1)-entry (proved).
The first three terms of a(n) coincide with those of A317614.

Examples

			For n = 1 the matrix A is
   1
with trace Tr(A) = a(1) = 1.
For n = 2 the matrix A is
   1, 2
   4, 3
with Tr(A) = a(2) = 4.
For n = 3 the matrix A is
   1, 2, 3
   8, 9, 4
   7, 6, 5
with Tr(A) = a(3) = 15.
For n = 4 the matrix A is
   1,  2,  3, 4
  12, 13, 14, 5
  11, 16, 15, 6
  10,  9,  8, 7
with Tr(A) = a(4) = 36.
		

Crossrefs

Cf. A126224 (determinant of the matrix A), A317298 (first differences).

Programs

  • GAP
    a_n:=List([1..43], n->(3 + 2*n - 3*n^2 + 4*n^3 - 3*RemInt(-1 + n, 2))/6);
    
  • GAP
    List([1..43],n->(3+2*n-3*n^2+4*n^3-3*((-1+n) mod 2))/6); # Muniru A Asiru, Sep 17 2018
  • Magma
    I:=[1,4,15,36,73]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..43]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    seq((3+2*n-3*n^2+4*n^3-3*modp((-1+n),2))/6,n=1..43); # Muniru A Asiru, Sep 17 2018
  • Mathematica
    Table[1/6 (3 + 2 n - 3 n^2 + 4 n^3 - 3 Mod[-1 + n, 2]), {n, 1, 43}] (* or *)
    CoefficientList[ Series[x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)), {x, 0, 43}], x] (* or *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {1, 4, 15, 36, 73}, 43]
  • Maxima
    a(n):=(3 + 2*n - 3*n^2 + 4*n^3 - 3*mod(-1 + n, 2))/6$ makelist(a(n), n, 1, 43);
    
  • PARI
    Vec(x*(1 + x + 5*x^2 + x^3)/((-1 + x)^4*(1 + x)) + O(x^44))
    
  • PARI
    a(n) = (3 + 2*n - 3*n^2 + 4*n^3 - 3*((-1 + n)%2))/6
    

Formula

a(n) = A045991(n) - Sum_{k=2..n-1} A085046(k) for n > 2 (proved).
G.f.: x*(1 + x + 5 x^2 + x^3)/((-1 + x)^4 (1 + x)).
a(n) + a(n + 1) = A228958(2*n + 1).
From Colin Barker, Aug 17 2018: (Start)
a(n) = (2*n - 3*n^2 + 4*n^3) / 6 for n even.
a(n) = (3 + 2*n - 3*n^2 + 4*n^3) / 6 for n odd.
a(n) = 3*a(n - 1) - 2*a(n - 2) - 2*a(n - 3) + 3*a(n - 4) - a(n - 5) for n > 5.
(End)
E.g.f.: (1/12)*exp(-x)*(-3 + exp(2*x)*(3 + 6*x + 18*x^2 + 8*x^3)). - Stefano Spezia, Feb 10 2019

A308896 Walk a rook along the square spiral numbered 0, 1, 2, ... (cf. A274641); a(n) = mex of earlier values the rook can move to.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 0, 2, 3, 1, 2, 3, 0, 2, 3, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 4, 5, 6, 7, 0, 4, 5, 6, 7, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 2, 5, 4, 7, 6, 3, 0, 2, 5, 4, 7, 6, 3, 1, 8, 9, 10, 11, 12, 13, 14, 15, 0, 8, 9, 10, 11, 12, 13, 14, 15, 1, 8
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2019

Keywords

Comments

Analog of A308884 but using a rook rather than a knight.
The array of values - see the illustration in the link - appears to have a number of interesting symmetries.

Examples

			The central 21 X 21 portion of the plane:
[ 4  1  3 30 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17  2  0]
[ 5  2  1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16  0  3]
[18 17 16  1  3  6  7 12 13 14 15  8  9 10 11  4  5  2  0 31 30]
[19 16 17  2  1  7  6 13 12 15 14  9  8 11 10  5  4  0  3 30 31]
[16 19 18  5  4  1  3 14 15 12 13 10 11  8  9  2  0  7  6 29 28]
[17 18 19  4  5  2  1 15 14 13 12 11 10  9  8  0  3  6  7 28 29]
[22 21 20 11 10  9  8  1  3  6  7  4  5  2  0 15 14 13 12 27 26]
[23 20 21 10 11  8  9  2  1  7  6  5  4  0  3 14 15 12 13 26 27]
[20 23 22  9  8 11 10  5  4  1  3  2  0  7  6 13 12 15 14 25 24]
[21 22 23  8  9 10 11  4  5  2  1  0  3  6  7 12 13 14 15 24 25]
*26 25 24 15 14 13 12  7  6  3 *0* 1  2  5  4 11 10  9  8 23 22]
[27 24 25 14 15 12 13  6  7  0  2  3  1  4  5 10 11  8  9 22 23]
[24 27 26 13 12 15 14  3  0  4  5  6  7  1  2  9  8 11 10 21 20]
[25 26 27 12 13 14 15  0  2  5  4  7  6  3  1  8  9 10 11 20 21]
[30 29 28  7  6  3  0  8  9 10 11 12 13 14 15  1  2  5  4 19 18]
[31 28 29  6  7  0  2  9  8 11 10 13 12 15 14  3  1  4  5 18 19]
[28 31 30  3  0  4  5 10 11  8  9 14 15 12 13  6  7  1  2 17 16]
[29 30 31  0  2  5  4 11 10  9  8 15 14 13 12  7  6  3  1 16 17]
[ 6  3  0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  1  2]
[ 7  0  2 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30  3  1]
[ 0  4  5 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29  6  7]
===============================**===============================
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(n) = 0, 1 iff n belongs to A002378, A085046, respectively. - Rémy Sigrist, Jul 02 2019
For formulas for the terms in the array, see the "Explicit formulas" link.

Extensions

More terms from Rémy Sigrist, Jul 02 2019

A290561 a(n) = n + cos(n*Pi/2).

Original entry on oeis.org

1, 1, 1, 3, 5, 5, 5, 7, 9, 9, 9, 11, 13, 13, 13, 15, 17, 17, 17, 19, 21, 21, 21, 23, 25, 25, 25, 27, 29, 29, 29, 31, 33, 33, 33, 35, 37, 37, 37, 39, 41, 41, 41, 43, 45, 45, 45, 47, 49, 49, 49, 51, 53, 53, 53, 55, 57, 57, 57, 59, 61, 61, 61, 63, 65, 65, 65
Offset: 0

Views

Author

Keywords

Comments

a(n) divides A289296(n).

Crossrefs

Programs

  • Maple
    A290561:=n->n+cos(n*Pi/2): seq(A290561(n), n=0..150); # Wesley Ivan Hurt, Aug 06 2017
  • Mathematica
    a[n_] := n + Cos[n*Pi/2]; Table[a[n], {n, 0, 60}]
  • PARI
    a(n) = n + round(cos(n*Pi/2)); \\ Michel Marcus, Aug 06 2017
    
  • PARI
    Vec((x^3 + x^2 - x + 1)/((x - 1)^2*(x^2 + 1)) + O(x^100)) \\ Colin Barker, Aug 06 2017

Formula

G.f.: (x^3 + x^2 - x + 1)/((x - 1)^2*(x^2 + 1)).
a(n) = n if n == 3 (mod 4), and a(n) = a(n-4) + 4 otherwise, for n>2.
a(n) = a(n+20) - 20.
a(n) = 2*A004524(n) + 1.
a(n) + A290562(n) = 2*n.
a(n) * A290562(n) = n^2 - cos(n*Pi/2)^2 = A085046(n) for n>0.
A290562(n) = -a(-n).
From Colin Barker, Aug 06 2017: (Start)
a(n) = ((-i)^n + i^n)/2 + n where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3. (End)

A290562 a(n) = n - cos(n*Pi/2).

Original entry on oeis.org

-1, 1, 3, 3, 3, 5, 7, 7, 7, 9, 11, 11, 11, 13, 15, 15, 15, 17, 19, 19, 19, 21, 23, 23, 23, 25, 27, 27, 27, 29, 31, 31, 31, 33, 35, 35, 35, 37, 39, 39, 39, 41, 43, 43, 43, 45, 47, 47, 47, 49, 51, 51, 51, 53, 55, 55, 55, 57, 59, 59, 59, 61, 63, 63, 63, 65, 67
Offset: 0

Views

Author

Keywords

Comments

a(n) divides A289870(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Cos[n*Pi/2]; Table[a[n], {n, 0, 60}]
  • PARI
    a(n) = n - round(cos(n*Pi/2)); \\ Michel Marcus, Aug 06 2017
    
  • PARI
    Vec((x^3 - x^2 + 3*x - 1)/((x - 1)^2*(x^2 + 1)) + O(x^100)) \\ Colin Barker, Aug 08 2017

Formula

G.f.: (x^3 - x^2 + 3 x - 1)/((x - 1)^2*(x^2 + 1)).
a(n) = n if n == 1 (mod 4), and a(n) = a(n-4) + 4 otherwise, for n>4.
a(n) = a(n+20) - 20.
a(n) = -A290561(-n).
a(n) + A290561(n) = 2*n.
a(n) * A290561(n) = n^2 - cos(n*Pi/2)^2 = A085046(n) for n>0.
From Colin Barker, Aug 08 2017: (Start)
a(n) = n - (-i)^n/2 - i^n/2 where i=sqrt(-1).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3.
(End)

A120413 Largest even number strictly less than n^2.

Original entry on oeis.org

0, 2, 8, 14, 24, 34, 48, 62, 80, 98, 120, 142, 168, 194, 224, 254, 288, 322, 360, 398, 440, 482, 528, 574, 624, 674, 728, 782, 840, 898, 960, 1022, 1088, 1154, 1224, 1294, 1368, 1442, 1520, 1598, 1680, 1762, 1848, 1934, 2024, 2114, 2208, 2302, 2400, 2498, 2600
Offset: 1

Views

Author

Henry Bottomley, Jul 06 2006

Keywords

Comments

Longest non-intersecting route from (0, 0) to (n - 1, n - 1) staying in an (n - 1) X (n - 1) box (shortest route is length 2n A005843).

Programs

  • Maple
    seq(2*ceil(n^2/2)-2,n=1..50);
  • Mathematica
    Flatten[Table[{(2n - 1)^2 - 1, 4n^2 - 2}, {n, 25}]] (* Alonso del Arte, Apr 15 2016 *)
  • PARI
    lista(nn) = for(n=0, nn, print1((-1+(-1)^n+4*n+2*n^2)/2, ", ")); \\ Altug Alkan, Apr 15 2016

Formula

a(n) = 2*ceiling[n^2/2] - 2 = 2*A074148(n) = A085046(n) - 1.
From Colin Barker, Jul 29 2012: (Start)
a(n) = (-1 + (-1)^n + 4*n + 2*n^2)/2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: 2*x*(1 + 2*x - x^2)/((1-x)^3*(1+x)). (End)
a(n) = n^2 - 2 for even n; a(n) = n^2 - 1 for odd n. -Dennis P. Walsh, Apr 15 2016

Extensions

Offset corrected by N. J. A. Sloane, Apr 15 2016

A264798 Irregular triangle read by rows: odd-valued terms of A094728(n+1).

Original entry on oeis.org

1, 3, 9, 5, 15, 7, 25, 21, 9, 35, 27, 11, 49, 45, 33, 13, 63, 55, 39, 15, 81, 77, 65, 45, 17, 99, 91, 75, 51, 19, 121, 117, 105, 85, 57, 21, 143, 135, 119, 95, 63, 23, 169, 165, 153, 133, 105, 69, 25, 195, 187, 171, 147, 115, 75, 27, 225, 221, 209, 189, 161, 125, 81, 29, 255, 247
Offset: 0

Views

Author

Paul Curtz, Nov 25 2015

Keywords

Comments

A094728(n+1) comes from A120070(n+2). a(n) approximates frequencies of the spectral lines of the hydrogen atom.
Row sums: 1, 3, 14, 22, ... = A024598(n+1).
First column: A085046(n+1).
Row sums of A261046(n) = 1, 3, 8, 12, ... = A014255(n). See the formula.

Examples

			Irregular triangle begins:
1,
3,
9,  5,
15, 7,
25, 21,  9,
35, 27, 11,
49, 45, 33, 13,
63, 55, 39, 15,
...
		

Crossrefs

Programs

  • Mathematica
    Table[n^2 - k^2, {n, 14}, {k, 0, n - 1}] /. n_ /; EvenQ@ n -> Nothing // Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=1,20,for(k=0,n-1,s=n^2-k^2;if(s%2,print1(s,", ")))) \\ Derek Orr, Dec 24 2015

Formula

a(n) = A261046(n)*A167268(n+1)/2, where A167268 is Janet's sequence.
Showing 1-10 of 10 results.