cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A300358 Array read by antidiagonals: T(m,n) = total domination number of the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 5, 4, 4, 4, 6, 6, 8, 8, 6, 6, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 6, 6, 8, 10, 10, 10, 10, 8, 6, 6, 6, 8, 9, 12, 12, 12, 12, 12, 9, 8, 6, 6, 8, 10, 12, 14, 14, 14, 14, 12, 10, 8, 6, 7, 8, 11, 14, 15, 16, 15, 16, 15, 14, 11, 8, 7
Offset: 1

Views

Author

Andrew Howroyd, Apr 20 2018

Keywords

Examples

			Table begins:
=======================================================
m\n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
---+---------------------------------------------------
1  | 1  2  2  2  3  4  4  4  5  6  6  6  7  8  8  8 ...
2  | 2  2  2  4  4  4  6  6  6  8  8  8 10 10 10 12 ...
3  | 2  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 ...
4  | 2  4  4  6  8  8 10 12 12 14 14 16 18 18 20 20 ...
5  | 3  4  5  8  9 10 12 14 15 16 18 20 21 22 24 26 ...
6  | 4  4  6  8 10 12 14 16 18 20 20 24 24 26 28 30 ...
7  | 4  6  7 10 12 14 15 18 20 22 24 26 27 30 32 34 ...
8  | 4  6  8 12 14 16 18 20 22 24 28 30 32 34 36 38 ...
9  | 5  6  9 12 15 18 20 22 25 28 30 32 35 38 40 42 ...
...
		

Crossrefs

Rows 1..2 are A004524(n+2), A302402.
Main diagonal is A302488.

A369692 Connected domination number of the n X n grid graph.

Original entry on oeis.org

1, 2, 3, 7, 11, 14, 20, 26, 30, 39, 47, 52, 64, 74, 80, 95
Offset: 1

Views

Author

Alexander D. Healy, Feb 25 2024

Keywords

Examples

			From _Andrew Howroyd_, Mar 06 2024: (Start)
a(16) = 95 = 16 + 5*14 + 4*2 + 1.
  . . . . . . . . . . . . . . . .
  X X X X X X X X X X X X X X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X .
(End)
		

Crossrefs

Cf. A381730 (numbers of minimum connected dominating sets).

Formula

a(3*n) <= n*(3*n+1); a(3*n-1) <= 3*n^2 - 1; a(3*n-2) <= (n-1)*(3*n+1). Conjecturally these inequalities hold with equality for n > 1. - Andrew Howroyd, Mar 06 2024

Extensions

a(10)-a(16) from Andrew Howroyd, Feb 25 2024

A303142 Number of minimum total dominating sets in the n X n grid graph.

Original entry on oeis.org

0, 4, 2, 16, 160, 144, 4, 256, 1364, 484, 6, 784, 5032, 1444, 8, 2116, 12972, 3364, 10, 4624, 27376, 6724, 12, 8836, 50820, 12100, 14, 15376, 86264, 20164
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2018

Keywords

Crossrefs

Main diagonal of A303293.

Extensions

a(6)-a(30) from Andrew Howroyd, Apr 22 2018

A157522 Triangle T(n, k) = f(n, k) + f(n, n-k) - 1, where f(n, k) = k if k <= floor(n/4), floor(n/2) - k if floor(n/4) < k <= floor(n/2), k - floor(n/2) if floor(n/2) < k <= floor(3*n/4), otherwise n-k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 3, 1, 1, 3, 2, 2, 3, 1, 1, 3, 3, 1, 3, 3, 1, 1, 3, 4, 2, 2, 4, 3, 1, 1, 3, 5, 3, 1, 3, 5, 3, 1, 1, 3, 5, 4, 2, 2, 4, 5, 3, 1, 1, 3, 5, 5, 3, 1, 3, 5, 5, 3, 1, 1, 3, 5, 6, 4, 2, 2, 4, 6, 5, 3, 1, 1, 3, 5, 7, 5, 3, 1, 3, 5, 7, 5, 3, 1, 1, 3, 5, 7, 6, 4, 2, 2, 4, 6, 7, 5, 3, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 02 2009

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 1, 1;
  1, 2, 2, 1;
  1, 3, 1, 3, 1;
  1, 3, 2, 2, 3, 1;
  1, 3, 3, 1, 3, 3, 1;
  1, 3, 4, 2, 2, 4, 3, 1;
  1, 3, 5, 3, 1, 3, 5, 3, 1;
  1, 3, 5, 4, 2, 2, 4, 5, 3, 1;
  1, 3, 5, 5, 3, 1, 3, 5, 5, 3, 1;
		

Crossrefs

Cf. A157523.

Programs

  • Mathematica
    f[n_, k_]= 1 +If[k<=Floor[n/4], k, If[Floor[n/4]G. C. Greubel, Jan 22 2022 *)
  • Sage
    def f(n, k):
        if (k <= (n//4)): return k+1
        elif ((n//4) < k <= (n//2)): return (n//2)-k+1
        elif ((n//2) < k <= (3*n//4)): return k+1-(n//2)
        else: return n-k+1
    def T(n,k): return f(n,k) + f(n,n-k) - 1
    flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jan 22 2022

Formula

T(n, k) = f(n, k) + f(n, n-k) - 1, where f(n, k) = k if k <= floor(n/4), floor(n/2) - k if floor(n/4) < k <= floor(n/2), k - floor(n/2) if floor(n/2) < k <= floor(3*n/4), otherwise n-k.
From G. C. Greubel, Jan 22 2022: (Start)
T(n, n-k) = T(n, k).
T(2*n, n) = 1.
T(2*n+1, n) = A040000(n).
Sum_{k=0..n} T(n, k) = A302488(n). (End)

Extensions

Edited by N. J. A. Sloane, Mar 05 2009
Showing 1-4 of 4 results.