cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008815 Expansion of (1+x^8)/((1-x)^2*(1-x^8)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32, 37, 42, 47, 52, 57, 62, 67, 72, 79, 86, 93, 100, 107, 114, 121, 128, 137, 146, 155, 164, 173, 182, 191, 200, 211, 222, 233, 244, 255, 266, 277, 288, 301, 314, 327, 340, 353, 366, 379, 392, 407, 422
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. Expansions of the form (1+x^m)/((1-x)^2*(1-x^m)): A000290 (m=1), A000982 (m=2), A008810 (m=3), A008811 (m=4), A008812 (m=5), A008813 (m=6), A008814 (m=7), this sequence (m=8), A008816 (m=9), A008817 (m=10).

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,11,14];; for n in [11..50] do a[n]:=2*a[n-1] -a[n-2]+a[n-8]-2*a[n-9]+a[n-10]; od; a; # G. C. Greubel, Sep 12 2019
  • Magma
    I:=[1,2,3,4,5,6,7,8,11,14]; [n le 10 select I[n] else 2*Self(n-1) -Self(n-2)+Self(n-8)-2*Self(n-9)+Self(n-10): n in [1..50]]; // Vincenzo Librandi, May 14 2019
    
  • Maple
    seq(coeff(series((1+x^8)/((1-x)^2*(1-x^8)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Sep 12 2019
  • Mathematica
    CoefficientList[Series[(1+x^8)/(1-x)^2/(1-x^8), {x, 0, 50}], x] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1}, {1,2,3,4,5,6,7,8,11,14}, 50] (* Harvey P. Dale, Dec 17 2016 *)
  • PARI
    a(n)=(n*(n+2)+14+4*(n%4-1)*(-1)^(n\4))\8  \\ Tani Akinari, Jul 25 2013
    
  • Sage
    def A008815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^8)/((1-x)^2*(1-x^8))).list()
    A008815_list(50) # G. C. Greubel, Sep 12 2019
    

Formula

G.f.: (1 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = floor( (n*(n+2) + 14 + 4*((n mod 4) - 1)*(-1)^floor(n/4))/8 ). - Tani Akinari, Jul 25 2013
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10). - Vincenzo Librandi, May 14 2019