cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008861 a(n) = Sum_{k=0..8} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1013, 1981, 3797, 7099, 12911, 22819, 39203, 65536, 106762, 169766, 263950, 401930, 600370, 880970, 1271626, 1807781, 2533987, 3505699, 4791323, 6474541, 8656937, 11460949, 15033173, 19548046
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into nine or fewer parts. - Geoffrey Critzer, Jan 24 2009
a(n) is the maximal number of regions in 8-space formed by n-1 7-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859, A008860 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, 0*1*0*1*0*1*0*, and 1*0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(9)=511 because all but one (namely 1+1+1+...+1=10) of the 2^9 compositions of 10 are in nine or fewer parts. - _Geoffrey Critzer_, Jan 24 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..8], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008861 = sum . take 9 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..8]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(sum(binomial(n,j), j=0..8), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    Sum[Binomial[Range[41]-1, j-1], {j,9}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    vector(40, n, sum(j=0,8, binomial(n-1,j))) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    [sum(binomial(n,k) for k in (0..8)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=0..4} binomial(n+1, 2*k), compare A008859.
From Geoffrey Critzer, Jan 24 2009: (Start)
G.f.: (1 - 7*x + 22*x^2 - 40*x^3 + 46*x^4 - 34*x^5 + 16*x^6 - 4*x^7 + x^8)/(1-x)^9.
a(n) = (n^8 - 20*n^7 + 210*n^6 - 1064*n^5 + 3969*n^4 - 4340*n^3 + 15980*n^2 + 25584*n + 40320)/8!. (End)