cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008931 Expansion of (2/(1+sqrt(1-36*x)))^(1/3).

Original entry on oeis.org

1, 3, 45, 936, 22572, 592515, 16434495, 473825700, 14058408519, 426438391743, 13164565835421, 412255067017248, 13064028812911440, 418149414542496168, 13498863325944967656, 439006511643775469856, 14369623854340007790108, 473027210589699351461700
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=6*(5-21*(n-1)+18*(n-1)^2)*a[n-1]/((n-1)*(3*n-2)); od; a; # G. C. Greubel, Sep 13 2019
  • Magma
    I:=[1]; [n le 1 select I[n] else 6*(5-21*(n-1)+18*(n-1)^2)*Self(n-1)/((n-1)*(3*n-2)): n in [1..20]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(9^n*binomial(2*n +1/3, n)/(6*n+1), n=0..20); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[Surd[2/(1+Sqrt[1-36x]),3],{x,0,20}],x] (* Harvey P. Dale, Aug 12 2016 *)
    Table[9^n Binomial[2 n + 1/3, n]/(6 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((2/(1+sqrt(1-36*x)))^(1/3)) \\ G. C. Greubel, Apr 11 2017
    
  • Sage
    [9^n*binomial(2*n +1/3, n)/(6*n+1) for n in (0..20)] # G. C. Greubel, Sep 13 2019
    

Formula

From Vladimir Reshetnikov, Oct 12 2016: (Start)
a(n) = 9^n*binomial(2*n + 1/3, n)/(6*n + 1).
D-finite with recurrence: n*(3*n+1)*a(n) = 6*(18*n^2-21*n+5)*a(n-1). (End)
a(n) ~ 2^(2*n-2/3)*3^(2*n-1)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Oct 13 2016
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9). - Seiichi Manyama, Jun 20 2025
G.f.: 2F1(1/6, 2/3 ; 4/3 ; 36*x). - R. J. Mathar, Jul 30 2025