cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008954 Final digit of triangular number n*(n+1)/2.

Original entry on oeis.org

0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0, 0, 1, 3, 6, 0, 5, 1, 8, 6, 5, 5, 6, 8, 1, 5, 0, 6, 3, 1, 0
Offset: 0

Views

Author

Keywords

Crossrefs

First differences of A111072.

Programs

  • GAP
    List([0..100], n-> (Binomial(n+1,2) mod 10) ); # G. C. Greubel, Sep 14 2019
  • Magma
    [Binomial(n+1,2) mod 10: n in [0..100]]; // G. C. Greubel, Sep 14 2019
    
  • Maple
    seq(mod(binomial(n+1, 2),10), n = 0 .. 100); # G. C. Greubel, Sep 14 2019
  • Mathematica
    Table[Mod[n*(n+1)/2, 10], {n, 0, 100}]
    LinearRecurrence[{0,0,0,0,1,0,0,0,0,-1,0,0,0,0,1},{0,1,3,6,0,5,1,8,6,5,5, 6,8,1,5},110] (* Harvey P. Dale, Dec 31 2014 *)
  • PARI
    a(n)=n*(n+1)/2%10 \\ Charles R Greathouse IV, Mar 05 2014
    
  • Sage
    [Mod(binomial(n+1,2), 10) for n in (0..100)] # G. C. Greubel, Sep 14 2019
    

Formula

a(1) = 1, a(n+1) = (a(n) + n + 1) mod 10.
Periodic with period 20: repeat [0,1,3,6,0,5,1,8,6,5,5,6,8,1,5,0,6,3, 1,0]. - Franklin T. Adams-Watters, Mar 13 2006
It follows that all triangular numbers end with a digit of 0, 1, 3, 5, 6, or 8, and thus none end with a digit of 2, 4, 7, or 9. - Harvey P. Dale, Dec 31 2014
a(n) = n*(n+1)/2 mod 10. - Ant King, Apr 26 2009
From R. J. Mathar, Apr 15 2010: (Start)
a(n) = a(n-5) - a(n-10) + a(n-15).
G.f.: x*(1 +3*x +6*x^2 +5*x^4 +5*x^6 +5*x^8 +6*x^10 +3*x^11 +x^12)/(1 -x^5 +x^10 -x^15). (End)
a(n) = A010879(A000217(n)). - Michel Marcus, May 26 2022