cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008957 Triangle of central factorial numbers T(2*n,2*n-2*k), k >= 0, n >= 1 (in Riordan's notation).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 21, 1, 1, 30, 147, 85, 1, 1, 55, 627, 1408, 341, 1, 1, 91, 2002, 11440, 13013, 1365, 1, 1, 140, 5278, 61490, 196053, 118482, 5461, 1, 1, 204, 12138, 251498, 1733303, 3255330, 1071799, 21845, 1, 1, 285, 25194, 846260, 10787231
Offset: 1

Views

Author

Keywords

Comments

D. E. Knuth [1992] on page 10 gives the formula Sum n^(2m-1) = Sum_{k=1..m} (2k-1)! T(2m,2k) binomial(n+k, 2k) where T(m, k) is the central factorial number of the second kind. - Michael Somos, May 08 2018

Examples

			The triangle starts:
  1;
  1,  1;
  1,  5,    1;
  1, 14,   21,     1;
  1, 30,  147,    85,     1;
  1, 55,  627,  1408,   341,    1;
  1, 91, 2002, 11440, 13013, 1365, 1;
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217, Table 6.2(a).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Row reversed version of A036969. (0,0)-based version: A269945.
Cf. A008955.

Programs

  • Haskell
    a008957 n k = a008957_tabl !! (n-1) (k-1)
    a008957_row n = a008957_tabl !! (n-1)
    a008957_tabl = map reverse a036969_tabl
    -- Reinhard Zumkeller, Feb 18 2013
    
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end; # Gives rows of triangle in reversed order
  • Mathematica
    t[n_, n_] = t[n_, 1] = 1;
    t[n_, k_] := t[n-1, k-1] + k^2 t[n-1, k];
    Flatten[Table[t[n, k], {n, 1, 10}, {k, n, 1, -1}]][[1 ;; 50]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    {T(n, k) = if( n<1 || k>n, 0, n==k || k==1, 1, T(n-1, k-1) + k^2 * T(n-1, k))}; \\ Michael Somos, May 08 2018
    
  • Sage
    def A008957(n, k):
        m = n - k
        return 2*sum((-1)^(j+m)*(j+1)^(2*n)/(factorial(j+m+2)*factorial(m-j)) for j in (0..m))
    for n in (1..7): print([A008957(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018

Formula

From Michael Somos, May 08 2018: (Start)
T(n, k) = T(n-1, k-1) + k^2 * T(n-1, k), where T(n, n) = T(n, 1) = 1.
E.g.f.: x^2 * (cosh(sinh(y*x/2) / (x/2)) - 1) = (1*x^2)*y^2/2! + (1*x^2 + 1*x^4)*y^4/4! + (1*x^2 + 5*x^4 + 1*x^6)*y^6/6! + (1*x^2 + 14*x^4 + 21*x^6 + 1*x^8)*y^8/8! + ... (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000