A009003 Hypotenuse numbers (squares are sums of 2 nonzero squares).
5, 10, 13, 15, 17, 20, 25, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 80, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137, 140
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- R. Chapman, Pythagorean triples and sums of squares
- Steven R. Finch, Landau-Ramanujan Constant [Broken link]
- Steven R. Finch, Landau-Ramanujan Constant [From the Wayback machine]
- Ron Knott, Pythagorean Triples and Online Calculators
- J. Pahikkala, On contraharmonic mean and Pythagorean triples, Elemente der Mathematik, 65:2 (2010), 62-67.
- Patrick A. Thomas, Solutions of x^5=x up to base 100
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Haskell
import Data.List (findIndices) a009003 n = a009003_list !! (n-1) a009003_list = map (+ 1) $ findIndices (> 0) a005089_list -- Reinhard Zumkeller, Jan 07 2013
-
Maple
isA009003 := proc(n) local p; for p in numtheory[factorset](n) do if modp(p,4) = 1 then return true; end if; end do: false; end proc: for n from 1 to 200 do if isA009003(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Nov 17 2014
-
Mathematica
f[n_] := Module[{k = 1}, While[(n - k^2)^(1/2) != IntegerPart[(n - k^2)^(1/2)], k++; If[2 * k^2 >= n, k = 0; Break[]]]; k]; A009003 = {}; Do[If[f[n^2] > 0, AppendTo[A009003, n]], {n, 3, 100}]; A009003 (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *) Select[Range[200], Length[PowersRepresentations[#^2, 2, 2]] > 1 &] (* Alonso del Arte, Feb 11 2014 *)
-
PARI
is_A009003(n)=setsearch(Set(factor(n)[,1]%4),1) \\ M. F. Hasler, May 27 2012
-
PARI
list(lim)=my(v=List(),u=vectorsmall(lim\=1)); forprimestep(p=5,lim,4, forstep(n=p,lim,p, u[n]=1)); for(i=5,lim, if(u[i], listput(v,i))); u=0; Vec(v) \\ Charles R Greathouse IV, Jan 13 2022
-
Python
from itertools import count, islice from sympy import primefactors def A009003_gen(): # generator of terms return filter(lambda n:any(map(lambda p: p % 4 == 1,primefactors(n))),count(1)) A009003_list = list(islice(A009003_gen(),20)) # Chai Wah Wu, Jun 22 2022
Formula
A005089(a(n)) > 0. - Reinhard Zumkeller, Jan 07 2013
a(n) ~ n. - Charles R Greathouse IV, Jan 13 2022
a(n) = sqrt(n-th square in A000404), where A000404 lists the sums of two nonzero squares. - M. F. Hasler, Jun 20 2025
Extensions
Definition edited by Jean-Christophe Hervé, Nov 10 2013
Comments