A009410
E.g.f. log(1+x)*cos(x).
Original entry on oeis.org
0, 1, -1, -1, 0, 9, -45, 279, -2072, 17265, -160065, 1638031, -18353544, 223578809, -2943054205, 41639195623, -630238419600, 10162622387809, -173942578536993, 3149754003442847, -60163773962649200, 1208991988527548137
Offset: 0
-
S:= series(log(1+x)*cos(x),x,31):
seq(coeff(S,x,j)*j!, j=0..30); # Robert Israel, May 30 2016
-
CoefficientList[Series[Cos[x]*Log[1 + x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
Table[- I n (I^n HypergeometricPFQ[{1, 1, 1 - n}, {2}, -I] - (-I)^n HypergeometricPFQ[{1, 1, 1 - n}, {2}, I])/2, {n, 1, 20}] (* Benedict W. J. Irwin, May 30 2016 *)
A177699
Expansion of e.g.f. log(1+x) * sinh(x).
Original entry on oeis.org
0, 0, 2, -3, 12, -40, 190, -1071, 7224, -56232, 495898, -4880755, 53005700, -629398848, 8110146070, -112690225935, 1679413757168, -26719024870576, 451969255722162, -8099650628337987, 153288815339260796, -3054957193416951480, 63949589015139119598, -1402819397613793354063
Offset: 0
log(1+x) * sinh(x) = x^2 -x^3/2 +x^4/2 -x^5/3 +19*x^6/72 -17*x^7/80 +...
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
-
A177699 := proc(n)
log(1+x)*sinh(x) ;
coeftayl(%,x=0,n)*n! ;
end proc;
seq(A177699(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
-
Table[n ((-1)^n HypergeometricPFQ[{1, 1, 1 - n}, {2}, -1] + HypergeometricPFQ[{1, 1, 1 - n}, {2}, 1])/2, {n, 1, 20}] (* Benedict W. J. Irwin, May 30 2016 *)
-
a(n) = (-1)^n*sum(k=1, n\2, (n-2*k)!*binomial(n, 2*k-1)); \\ Seiichi Manyama, Feb 12 2025
A351881
Expansion of e.g.f. 1 / (1 - x)^cosh(x).
Original entry on oeis.org
1, 1, 2, 9, 42, 235, 1605, 12446, 108836, 1061565, 11402565, 133806134, 1703059974, 23366177055, 343788954691, 5399655967642, 90173526680152, 1595513146457993, 29817130502252169, 586883850601630054, 12135450890055396810, 263012688923611212107, 5962155058714267567319
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x)^Cosh[x], {x, 0, nmax}], x] Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(1/(1-x)^cosh(x))) \\ Michel Marcus, Feb 23 2022
A302610
Expansion of e.g.f. -log(1 - x)*arcsinh(x).
Original entry on oeis.org
0, 0, 2, 3, 4, 20, 158, 819, 3624, 33984, 427482, 3819915, 29665260, 404822340, 6948032310, 88407058635, 991515848400, 17715286764000, 383952670412850, 6349179054589875, 93532380775766100, 2063197602667372500, 53913667654307868750, 1098018631195048591875
Offset: 0
-log(1 - x)*arcsinh(x) = 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 20*x^5/5! + 158*x^6/6! + 819*x^7/7! + 3624*x^8/8! + ...
Cf.
A009410,
A009416,
A009429,
A009435,
A012572,
A104150,
A177699,
A177700,
A296435,
A296727,
A302611.
-
a:=series(-log(1-x)*arcsinh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[-Log[1 - x] ArcSinh[x], {x, 0, nmax}], x] Range[0, nmax]!
A302611
Expansion of e.g.f. -log(1 - x)*arctanh(x).
Original entry on oeis.org
0, 0, 2, 3, 16, 50, 368, 1764, 16896, 109584, 1297152, 10628640, 149944320, 1486442880, 24349317120, 283465647360, 5287713177600, 70734282393600, 1480103564083200, 22376988058521600, 519000166327910400, 8752948036761600000, 222845873874075648000, 4148476779335454720000
Offset: 0
-log(1 - x)*arctanh(x) = 2*x^2/2! + 3*x^3/3! + 16*x^4/4! + 50*x^5/5! + 368*x^6/6! + 1764*x^7/7! + 16896*x^8/8! + ...
Cf.
A005359,
A009410,
A009416,
A009429,
A009435,
A012697,
A081358,
A104150,
A177699,
A177700,
A202139,
A302610.
-
a:=series(-log(1-x)*arctanh(x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[-Log[1 - x] ArcTanh[x], {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); concat([0, 0], Vec(serlaplace(log(1-x)*log((1-x)/(1+x))/2))) \\ Altug Alkan, Apr 10 2018
A381016
Expansion of e.g.f. -log(1-x) * sin(x).
Original entry on oeis.org
0, 0, 2, 3, 4, 20, 110, 651, 4520, 36000, 322618, 3213595, 35226860, 421419492, 5463436134, 76301056755, 1142009233872, 18236159031584, 309463272791538, 5561354285804115, 105510576441518164, 2107380222724155540, 44200537412519181278, 971311172969442165883
Offset: 0
-
my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-log(1-x)*sin(x))))
-
a(n) = -sum(k=1, n\2, (-1)^k*(n-2*k)!*binomial(n, 2*k-1));
Showing 1-6 of 6 results.