A009965 Powers of 21.
1, 21, 441, 9261, 194481, 4084101, 85766121, 1801088541, 37822859361, 794280046581, 16679880978201, 350277500542221, 7355827511386641, 154472377739119461, 3243919932521508681, 68122318582951682301, 1430568690241985328321, 30041942495081691894741, 630880792396715529789561, 13248496640331026125580781, 278218429446951548637196401
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (21).
Crossrefs
Row 10 of A329332.
Programs
-
Magma
[21^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
-
Mathematica
21^Range[0,20] (* or *) NestList[21#&,1,20] (* Harvey P. Dale, Aug 31 2023 *)
-
Maxima
A009965(n):=21^n$ makelist(A009965(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
PARI
a(n)=21^n \\ Charles R Greathouse IV, Nov 18 2011
-
Sage
[lucas_number1(n,21,0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
Formula
For A009966..A009992 we have g.f.: 1/(1-qx), e.g.f.: exp(qx), with q = 21, 22, ..., 48. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = 21^n; a(n) = 21*a(n-1), n > 0, a(0)=1. - Vincenzo Librandi, Nov 21 2010
G.f.: 22/G(0) where G(k) = 1 - 2*x*(k+1)/(1 - 1/(1 - 2*x*(k+1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 10 2013
Comments