A218724 a(n) = (21^n - 1)/20.
0, 1, 22, 463, 9724, 204205, 4288306, 90054427, 1891142968, 39714002329, 833994048910, 17513875027111, 367791375569332, 7723618886955973, 162195996626075434, 3406115929147584115, 71528434512099266416, 1502097124754084594737, 31544039619835776489478
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Kival Ngaokrajang, Illustration of initial terms
- Index entries related to partial sums
- Index entries for linear recurrences with constant coefficients, signature (22,-21).
Crossrefs
Programs
-
Magma
[n le 2 select n-1 else 22*Self(n-1) - 21*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
-
Mathematica
LinearRecurrence[{22, -21}, {0, 1}, 40] (* Vincenzo Librandi, Nov 07 2012 *)
-
Maxima
A218724(n):=(21^n-1)/20$ makelist(A218724(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A218724(n)=21^n\20
Formula
a(n) = floor(21^n/20).
G.f.: x/((1-x)*(1-21*x)). - Bruno Berselli, Nov 06 2012
a(n) = 22*a(n-1) - 21*a(n-2). - Vincenzo Librandi, Nov 07 2012
a(n) = 21*a(n-1) + 1. - Kival Ngaokrajang, Jan 27 2015
a(n) = a(n-1) + 21^(n-1), n >= 1, a(0) = 0. - Wolfdieter Lang, Feb 02 2015
E.g.f.: exp(11*x)*sinh(10*x)/10. - Elmo R. Oliveira, Aug 29 2024
Comments