A009968 Powers of 24: a(n) = 24^n.
1, 24, 576, 13824, 331776, 7962624, 191102976, 4586471424, 110075314176, 2641807540224, 63403380965376, 1521681143169024, 36520347436056576, 876488338465357824, 21035720123168587776, 504857282956046106624, 12116574790945106558976, 290797794982682557415424, 6979147079584381377970176, 167499529910025153071284224, 4019988717840603673710821376
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (24).
Crossrefs
Column k = 4 of A225816.
Programs
-
Magma
[24^n: n in [0..100]]; // Vincenzo Librandi, Nov 21 2010
-
Mathematica
NestList[24#&, 1, 20] (* Harvey P. Dale, Feb 04 2017 *)
-
PARI
a(n)=24^n \\ Charles R Greathouse IV, Sep 24 2015
-
Python
[24**n for n in range(21)] # Michael S. Branicky, Jan 24 2021
-
SageMath
[lucas_number1(n,24,0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
-
Scala
LazyList.iterate(1: BigInt)( * 24).take(24).toList // _Alonso del Arte, Apr 24 2020
Formula
G.f.: 1/(1 - 24*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(24x). - Zerinvary Lajos, Apr 29 2009
a(n) = 24^n; a(n) = 24*a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 21 2010
a(n) = det(|s(i + 4, j)|, 1 <= i, j <= n), where s(n, k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
Comments