cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010012 a(0) = 1, a(n) = 22*n^2 + 2 for n>0.

Original entry on oeis.org

1, 24, 90, 200, 354, 552, 794, 1080, 1410, 1784, 2202, 2664, 3170, 3720, 4314, 4952, 5634, 6360, 7130, 7944, 8802, 9704, 10650, 11640, 12674, 13752, 14874, 16040, 17250, 18504, 19802, 21144, 22530, 23960, 25434, 26952, 28514, 30120, 31770, 33464, 35202, 36984
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, Feb 06 2012: (Start)
First trisection of A008259.
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=3. After 1, all terms are in A000408. (End)

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [22*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 22 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1},LinearRecurrence[{3,-3,1},{24,90,200},50]] (* Harvey P. Dale, Jul 20 2013 *)
    CoefficientList[Series[(1 + x) (1 + 20 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+20*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*22+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(11)/44*Pi*coth( Pi/sqrt(11)) = 1.0706480516966... - R. J. Mathar, May 07 2024
a(n) = A069173(n)+A069173(n+1). - R. J. Mathar, May 07 2024