A010012 a(0) = 1, a(n) = 22*n^2 + 2 for n>0.
1, 24, 90, 200, 354, 552, 794, 1080, 1410, 1784, 2202, 2664, 3170, 3720, 4314, 4952, 5634, 6360, 7130, 7944, 8802, 9704, 10650, 11640, 12674, 13752, 14874, 16040, 17250, 18504, 19802, 21144, 22530, 23960, 25434, 26952, 28514, 30120, 31770, 33464, 35202, 36984
Offset: 0
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A206399.
Programs
-
Magma
[1] cat [22*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
-
Mathematica
Join[{1}, 22 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *) Join[{1},LinearRecurrence[{3,-3,1},{24,90,200},50]] (* Harvey P. Dale, Jul 20 2013 *) CoefficientList[Series[(1 + x) (1 + 20 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 03 2015 *)
Formula
G.f.: (1+x)*(1+20*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*22+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(11)/44*Pi*coth( Pi/sqrt(11)) = 1.0706480516966... - R. J. Mathar, May 07 2024
Comments