A010061 Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.
1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, 46, 48, 51, 54, 56, 63, 71, 78, 80, 83, 86, 88, 95, 97, 102, 104, 111, 113, 116, 119, 121, 128, 130, 133, 135, 142, 144, 147, 150, 152, 159, 161, 166, 168, 175, 177, 180, 183, 185, 192, 200, 207, 209, 212, 215, 217
Offset: 1
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
- G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365 [math.NT], 2021-2022; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
- Shyam Sunder Gupta, On Some Marvellous Numbers of Kaprekar, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 9, 275-315.
- Griffin N. Macris, Proof that no consecutive self numbers exist, 2020.
- G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II, Bollettino dell'Unione Matematica Italiana, 2-A (1999), 397-399.
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Haskell
a010061 n = a010061_list !! (n-1) a010061_list = filter ((== 0) . a228085) [1..] -- Reinhard Zumkeller, Oct 13 2013
-
Maple
# For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
-
Mathematica
Table[n + Total[IntegerDigits[n, 2]], {n, 0, 300}] // Complement[Range[Last[#]], #]& (* Jean-François Alcover, Sep 03 2013 *)
-
PARI
/* Gen(n, b) returns a list of the generators of n in base b. Written by Max Alekseyev (see Alekseyev et al., 2021). For example, Gen(101, 10) returns [91, 101]. - N. J. A. Sloane, Jan 02 2022 */ { Gen(u, b=10) = my(d, m, k); if(u<0 || u==1, return([]); ); if(u==0, return([0]); ); d = #digits(u, b)-1; m = u\b^d; while( sumdigits(m, b) > u - m*b^d, m--; if(m==0, m=b-1; d--; ); ); k = u - m*b^d - sumdigits(m, b); vecsort( concat( apply(x->x+m*b^d, Gen(k, b)), apply(x->m*b^d-1-x, Gen((b-1)*d-k-2, b)) ) ); }
Extensions
More terms from Antti Karttunen, Aug 17 2013
Better definition from Matthew C. Russell, Oct 08 2013
Comments