A010062 a(0)=1; thereafter a(n+1) = a(n) + number of 1's in binary representation of a(n).
1, 2, 3, 5, 7, 10, 12, 14, 17, 19, 22, 25, 28, 31, 36, 38, 41, 44, 47, 52, 55, 60, 64, 65, 67, 70, 73, 76, 79, 84, 87, 92, 96, 98, 101, 105, 109, 114, 118, 123, 129, 131, 134, 137, 140, 143, 148, 151, 156, 160, 162, 165, 169, 173, 178, 182, 187, 193, 196, 199, 204
Offset: 0
Examples
a(7) = 14 because a(6) = 12, which is 1100 in binary (having 2 on bits), and 12 + 2 = 14. a(8) = 17 because a(7) = 14, which is 1110 in binary (having 3 on bits), and 14 + 3 = 17.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Raoul Nakhmanson-Kulish, Graph of a(n)/(n*log_2(n)/2), showing self-similar fractal structure.
- Raoul Nakhmanson-Kulish, Graph of f(n), where f(n) = (a(n)-n*log_2(n)/2)/(n*sqrt(log_2(n)*log_2 log_2(n))) (see Stolarsky's estimate below).
- Kenneth B. Stolarsky, The sum of a digitaddition series, Proc. Amer. Math. Soc. 59 (1976), no. 1, 1--5. MR0409340 (53 #13099)
- Index entries for Colombian or self numbers and related sequences
Crossrefs
Programs
-
Haskell
a010062 n = a010062_list !! n a010062_list = iterate a092391 1 -- Reinhard Zumkeller, May 13 2012
-
Magma
[n le 1 select 1 else Self(n-1)+&+Intseq(Self(n-1),2): n in [1..61]]; // Bruno Berselli, Oct 27 2012
-
Mathematica
NestList[# + DigitCount[#, 2, 1] &, 1, 60] (* Alonso del Arte, Oct 26 2012 *)
-
PARI
print1(s=1);for(n=2,30,print1(", ", s+=hammingweight(s))) \\ Charles R Greathouse IV, Oct 27 2012
-
PARI
A010062=List(1); A010062(n)={for(n=#A010062,n, listput(A010062, A092391(A010062[n])));A010062[n+1]} \\ A092391(n)=n+hammingweight(n) \\ M. F. Hasler, Nov 18 2019
-
Python
from itertools import islice def agen(): an = 1 while True: yield an; an += an.bit_count() print(list(islice(agen(), 61))) # Michael S. Branicky, Jul 31 2022
Formula
a(n) = (n/2)*log n + O(n*sqrt(log n * loglog n)), where log means log_2. In particular, a(n) ~ (n/2)*log n. [Stolarsky]
a(n + 1) = A092391(a(n)) = a(n) + A000120(a(n)). - Reinhard Zumkeller, May 27 2012, May 08 2004; corrected thanks to a notice by Lambert Herrgesell
Extensions
More terms from Benoit Cloitre, Jun 02 2002
Stolarsky reference from Matthew C. Russell, Oct 08 2013
Comments