cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010540 Decimal expansion of square root of 89.

Original entry on oeis.org

9, 4, 3, 3, 9, 8, 1, 1, 3, 2, 0, 5, 6, 6, 0, 3, 8, 1, 1, 3, 2, 0, 6, 6, 0, 3, 7, 7, 6, 2, 2, 6, 4, 0, 7, 1, 6, 9, 8, 3, 6, 2, 2, 6, 3, 3, 4, 1, 5, 1, 2, 1, 3, 2, 0, 6, 6, 2, 9, 8, 1, 4, 4, 8, 9, 8, 0, 0, 2, 2, 9, 0, 9, 5, 8, 5, 1, 1, 8, 0, 5, 8, 5, 4, 1, 0, 2, 6, 9, 8, 6, 8, 9, 0, 3, 8, 4, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 9 followed by {2, 3, 3, 2, 18} repeated. - Harry J. Smith, Jun 10 2009

Examples

			9.433981132056603811320660377622640716983622633415121320662981448980022...
		

Crossrefs

Cf. A010161 (continued fraction).

Programs

  • Mathematica
    RealDigits[Sqrt[89],10,120][[1]] (* Harvey P. Dale, Nov 20 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(89); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010540.txt", n, " ", d)); } \\ Harry J. Smith, Jun 10 2009
    
  • Python
    from math import isqrt
    def aupton(nn): return list(map(int, str(isqrt(89 * 10**(2*nn)))))[:nn]
    print(aupton(100)) # Michael S. Branicky, Sep 04 2021

A041159 Denominators of continued fraction convergents to sqrt(89).

Original entry on oeis.org

1, 2, 7, 23, 53, 977, 2007, 6998, 23001, 53000, 977001, 2007002, 6998007, 23001023, 53000053, 977001977, 2007004007, 6998013998, 23001046001, 53000106000, 977002954001, 2007006014002, 6998020996007, 23001069002023, 53000159000053, 977003931002977
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 2, 7, 23, 53, 977, 2007, 6998, 23001, 53000]; [n le 10 select I[n] else 1000*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 12 2013
  • Mathematica
    Denominator/@Convergents[Sqrt[89], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[-(x^8 - 2 x^7 + 7 x^6 - 23 x^5 + 53 x^4 + 23 x^3 + 7 x^2 + 2 x + 1)/(x^10 + 1000 x^5 - 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 12 2013 *)
    LinearRecurrence[{0,0,0,0,1000,0,0,0,0,1},{1,2,7,23,53,977,2007,6998,23001,53000},30] (* Harvey P. Dale, Feb 07 2019 *)

Formula

G.f.: -(x^8-2*x^7+7*x^6-23*x^5+53*x^4+23*x^3+7*x^2+2*x+1) / (x^10+1000*x^5-1). - Colin Barker, Nov 14 2013
a(n) = 1000*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 12 2013
Showing 1-2 of 2 results.