cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A041318 Numerators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

13, 79, 92, 171, 1118, 29239, 176552, 205791, 382343, 2499849, 65378417, 394770351, 460148768, 854919119, 5589663482, 146186169651, 882706681388, 1028892851039, 1911599532427, 12498490045601, 326872340718053, 1973732534353919, 2300604875071972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010217 (continued fraction).

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Nov 01 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{13,79,92,171,1118,29239,176552,205791,382343,2499849},30] (* Harvey P. Dale, Jul 28 2018 *)

Formula

a(5*n) = A088316(3*n+1), a(5*n+1) = (A088316(3*n+2) - A088316(3*n+1))/2, a(5*n+2) = (A088316(3*n+2)+A088316(3*n+1))/2, a(5*n+3) = A088316(3*n+2) and a(5*n+4) = A088316(3*n+3)/2. [Johannes W. Meijer, Jun 12 2010]
G.f.: -(x^9-13*x^8+79*x^7-92*x^6+171*x^5+1118*x^4+171*x^3+92*x^2+79*x+13) / (x^10+2236*x^5-1). - Colin Barker, Nov 08 2013

Extensions

More terms from Colin Barker, Nov 08 2013

A041319 Denominators of continued fraction convergents to sqrt(173).

Original entry on oeis.org

1, 6, 7, 13, 85, 2223, 13423, 15646, 29069, 190060, 4970629, 30013834, 34984463, 64998297, 424974245, 11114328667, 67110946247, 78225274914, 145336221161, 950242601880, 24851643870041, 150060105822126, 174911749692167, 324971855514293, 2124742882777925
Offset: 0

Views

Author

Keywords

Comments

The a(n) terms of this sequence can be constructed with the terms of sequence A140455. For the terms of the periodical sequence of the continued fraction for sqrt(173) see A010217. We observe that its period is five. - Johannes W. Meijer, Jun 12 2010

Crossrefs

Programs

  • Magma
    I:=[1,6,7,13,85,2223,13423,15646,29069,190060]; [n le 10 select I[n] else 2236*Self(n-5)+Self(n-10): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013
  • Mathematica
    Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[173], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *)
    Denominator[Convergents[Sqrt[173], 30]] (* Vincenzo Librandi, Dec 15 2013 *)
    LinearRecurrence[{0,0,0,0,2236,0,0,0,0,1},{1,6,7,13,85,2223,13423,15646,29069,190060},30] (* Harvey P. Dale, Sep 19 2020 *)

Formula

a(5*n) = A140455(3*n+1), a(5*n+1) = (A140455(3*n+2) - A140455(3*n+1))/2, a(5*n+2) = (A140455(3*n+2)+A140455(3*n+1))/2, a(5*n+3) = A140455(3*n+2) and a(5*n+4) = A140455(3*n+3)/2. - Johannes W. Meijer, Jun 12 2010
G.f.: -(x^8-6*x^7+7*x^6-13*x^5+85*x^4+13*x^3+7*x^2+6*x+1) / (x^10+2236*x^5-1). - Colin Barker, Nov 12 2013
a(n) = 2236*a(n-5) + a(n-10). - Vincenzo Librandi, Dec 15 2013
Showing 1-2 of 2 results.