A010353 Base-9 Armstrong or narcissistic numbers (written in base 10).
1, 2, 3, 4, 5, 6, 7, 8, 41, 50, 126, 127, 468, 469, 1824, 8052, 8295, 9857, 1198372, 3357009, 3357010, 6287267, 156608073, 156608074, 403584750, 403584751, 586638974, 3302332571, 42256814922, 42256814923, 114842637961, 155896317510, 552468844242, 552468844243, 647871937482, 686031429775
Offset: 1
Examples
126 = 150_9 (= 1*9^2 + 5*9^1 + 0*9^0) = 1^3 + 5^3 + 0^3. It is easy to see that 126 + 1 then also satisfies this relation, as for all other terms that are multiples of 9. - _M. F. Hasler_, Nov 20 2019
Links
- Joseph Myers, Table of n, a(n) for n = 1..58 (the full list of terms, from Winter)
- René-Louis Clerc, Perfect r-narcissistic numbers in any base, hal-04376934, 2024.
- Eric Weisstein's World of Mathematics, Narcissistic Number
- D. T. Winter, Table of Armstrong Numbers
Crossrefs
Programs
-
Mathematica
Select[Range[9^7], # == Total[IntegerDigits[#, 9]^IntegerLength[#, 9]] &] (* Michael De Vlieger, Jan 17 2024 *)
-
PARI
select( {is_A010353(n)=n==vecsum([d^#n|d<-n=digits(n,9)])}, [0..10^4]) \\ This gives only terms < 10^6, for illustration of is_A010353(). - M. F. Hasler, Nov 20 2019
Extensions
Edited by Joseph Myers, Jun 28 2009
Comments