A010571
High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on cubic lattice with nearest-neighbor interaction J at temperature T.
Original entry on oeis.org
3, 12, 120, 1368, 18300, 268728, 4179852, 67767744, 1133826324, 19443072084, 340085761968, 6046276240668, 108970501777080, 1986820814551056, 36587507853481908, 679619087721892176, 12720247240214281860, 239685390231729125004, 4543441582487318876664
Offset: 1
A002908
High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on square lattice with nearest-neighbor interaction J at temperature T.
Original entry on oeis.org
2, 4, 8, 24, 84, 328, 1372, 6024, 27412, 128228, 613160, 2985116, 14751592, 73825416, 373488764, 1907334616, 9820757380, 50934592820, 265877371160, 1395907472968, 7366966846564, 39062802311672, 208015460898924, 1112050252939612, 5966352507546872
Offset: 1
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 386.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
- Lars Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944).
- M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919-938.
-
series((1+v^2)*(1-(2/Pi)*(1-6*v^2+v^4)*EllipticK(4*v*(1-v^2)/(1+v^2)^2)/(1+v^2)^2)/2*v,v,50); # Sean A. Irvine, Nov 26 2017
-
u[h_]:=Coth[2h](1+(2/Pi)(2Tanh[2h]^2-1)EllipticK[(2Sinh[2h]/Cosh[2h]^2)^2]);
Table[SeriesCoefficient[u[ArcTanh[v]],{v,0,2n-1}],{n,10}]
(* Andrey Zabolotskiy, Sep 12 2017; see Onsager's eq. (116) *)
Rest[CoefficientList[Series[(1+x)/2 - (1 - 6*x + x^2)*EllipticK[(16*(-1 + x)^2*x)/(1 + x)^4] / (Pi*(1+x)), {x, 0, 25}], x]] (* Vaclav Kotesovec, Apr 27 2024 *)
A010557
Fourth-field derivative of Ising model free energy for 4-d cubic lattice.
Original entry on oeis.org
1, 32, 584, 8288, 101240, 1121120, 11570360, 113293088, 1064631032, 9681082144, 85688330696, 741562925664, 6296196525768, 52589092312288, 433044168426616, 3521747918221984, 28326976016327032, 225625290109912096, 1781402824552864712, 13954143265951219296, 108525895871787179576
Offset: 0
Name clarified, a(17)-a(20) using Butera & Pernici's formulas added by
Andrey Zabolotskiy, Nov 25 2024
A010563
High-temperature expansion for Ising model spin-spin correlation function on 4-d cubic lattice.
Original entry on oeis.org
1, 6, 108, 2628, 72638, 2200108, 71072290, 2405434612
Offset: 0
Showing 1-4 of 4 results.
Comments