cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A002913 High temperature series for spin-1/2 Ising magnetic susceptibility on 3-dimensional simple cubic lattice.

Original entry on oeis.org

1, 6, 30, 150, 726, 3510, 16710, 79494, 375174, 1769686, 8306862, 38975286, 182265822, 852063558, 3973784886, 18527532310, 86228667894, 401225368086, 1864308847838, 8660961643254, 40190947325670, 186475398518726, 864404776466406, 4006394107568934, 18554916271112254, 85923704942057238
Offset: 0

Views

Author

Keywords

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 381.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. other quantities: A001393 (partition function), A010571 (internal energy), A002916 (specific heat), A003490 (surface susceptibility), A007287 (layer susceptibility), A010040, A010043, A010046.
Cf. other structures: A002906 (square), A002920 (hexagonal), A002910 (honeycomb), A002914 (b.c.c.), A002921 (f.c.c.), A003119 (diamond), A010556 (4D cubic), A010579 (5D cubic), A010580 (6D cubic), A030008 (7D cubic).
Cf. low-temperature series: A002926 (ferromagnetic), A002915 (antiferromagnetic).
Cf. other models: A002170 (Heisenberg), A003279 (spherical).

Extensions

Corrections and updates from Steven Finch
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 01 2008
Several errors in the sequence were corrected by Per H. Lundow, Jan 17 2011

A001393 High temperature series for spin-1/2 Ising free energy on 3-dimensional simple cubic lattice.

Original entry on oeis.org

1, 0, 3, 22, 192, 2046, 24853, 329334, 4649601, 68884356, 1059830112, 16809862992, 273374177222, 4539862959852, 76744615270821, 1317316023432372, 22913901542478978, 403242080061821802, 7169757254509112094, 128654570700129670404, 2327634530912450464791, 42424918919225263486322, 778469235834728913157632, 14371906938404203811137770
Offset: 0

Views

Author

Keywords

Comments

z = exp(-f/T) = 2 * cosh(K)^3 * Sum_{n >= 0} a(n) * v^(2*n) where v = tanh(K), K = J/T, T is temperature (in the units of energy), J is the nearest-neighbor interaction, and f is the free energy per spin. See Wipf, pp. 181-182. z is the [geometric average] partition function per spin, so the original name of this entry, "Partition function for cubic lattice", is somewhat more directly related to this sequence. - Andrey Zabolotskiy, Oct 18 2021

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andreas Wipf, Statistical Approach to Quantum Field Theory, LNP 864, Springer, 2013.

Crossrefs

Extensions

Corrections and updates from Steven Finch
a(14)-a(23) from Andrey Zabolotskiy, Oct 18 2021

A002908 High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on square lattice with nearest-neighbor interaction J at temperature T.

Original entry on oeis.org

2, 4, 8, 24, 84, 328, 1372, 6024, 27412, 128228, 613160, 2985116, 14751592, 73825416, 373488764, 1907334616, 9820757380, 50934592820, 265877371160, 1395907472968, 7366966846564, 39062802311672, 208015460898924, 1112050252939612, 5966352507546872
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Energy function for square lattice.

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 386.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    series((1+v^2)*(1-(2/Pi)*(1-6*v^2+v^4)*EllipticK(4*v*(1-v^2)/(1+v^2)^2)/(1+v^2)^2)/2*v,v,50); # Sean A. Irvine, Nov 26 2017
  • Mathematica
    u[h_]:=Coth[2h](1+(2/Pi)(2Tanh[2h]^2-1)EllipticK[(2Sinh[2h]/Cosh[2h]^2)^2]);
    Table[SeriesCoefficient[u[ArcTanh[v]],{v,0,2n-1}],{n,10}]
    (* Andrey Zabolotskiy, Sep 12 2017; see Onsager's eq. (116) *)
    Rest[CoefficientList[Series[(1+x)/2 - (1 - 6*x + x^2)*EllipticK[(16*(-1 + x)^2*x)/(1 + x)^4] / (Pi*(1+x)), {x, 0, 25}], x]] (* Vaclav Kotesovec, Apr 27 2024 *)

Formula

a(n) ~ 2 * (1 + sqrt(2))^(2*n-1) / (Pi * n^2). - Vaclav Kotesovec, Apr 27 2024

Extensions

More terms and new name from Andrey Zabolotskiy, Oct 19 2017

A002916 High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice.

Original entry on oeis.org

3, 33, 564, 8976, 155124, 2791308, 51382068, 962178084, 18258531348, 350143322088, 6772382631732, 131922552534036, 2585198190891636, 50919899448451512, 1007393565758096820, 20007153991627682124, 398699967207692643924, 7969220499183448073760, 159718349893920279061428
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 3*A001408.
Cf. A002917 (b.c.c.), A002918 (f.c.c.), A001393 (partition function), A010571 (internal energy), A002913 (susceptibility), A002169 (Heisenberg model), A029872 (square, low-temperature).

Programs

Formula

Sum_{n>=0} a(n) * v^(2*n) = (v^2-1) * (-q/2*f(v)^2 - (v^2-1) * f'(v)^2 + f(v) * (2*v*f'(v) + (v^2-1)*f''(v))) / f(v)^2, where f(v) = Sum_{n>=0} A001393(n) * v^(2*n) and q = 6 is the number of nearest neighbors. - Andrey Zabolotskiy, Feb 15 2022

Extensions

Corrections and updates from Steven Finch
Terms a(13) and beyond from Andrey Zabolotskiy, Feb 15 2022

A010572 High-temperature coefficients for the internal energy for spin-1/2 Ising model on 4-d cubic lattice.

Original entry on oeis.org

4, 24, 432, 10512, 290552, 8800432, 284289160, 9621738448
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A010571 (3D), A010573 (5D), A010574 (6D), A030044 (partition function), A010557 (fourth-field derivative of free energy), A010563.

Formula

Sum_{n>=0} a(n) * v^(2*n+1) = v*q/2 + (1-v^2) * f'(v) / f(v), where f(v) = Sum_{n>=0} A030044(n) * v^(2*n) and q = 8 is the number of nearest neighbors. - Andrey Zabolotskiy, Feb 16 2022

Extensions

a(5)-a(7) from Andrey Zabolotskiy, Feb 16 2022, corrected Nov 26 2024

A047712 High-temperature coefficients for internal energy for spin-1/2 Ising model on f.c.c. lattice.

Original entry on oeis.org

6, 24, 132, 816, 5448, 38808, 290568, 2255232, 17981532, 146428728, 1213014960, 10192820592, 86687830596, 744919762584
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010571 (cubic), A047711 (b.c.c.), A001407 (partition function), A002918 (specific heat).

Formula

G.f. 6*v + 24*v^2 + 132*v^3 + 816*v^4 ... = v*q/2 + (1-v^2) * f'(v) / f(v), where f(v) = 1 + 8*v^3 + 33*v^4 + ... is the g.f. of A001407 and q = 12 is the number of nearest neighbors. - Andrey Zabolotskiy, Feb 14 2022

Extensions

a(9)-a(11) from Sykes, Martin & Hunter added by Andrey Zabolotskiy, Feb 05 2022
Name clarified and a(12)-a(13) added by Andrey Zabolotskiy, Feb 14 2022
a(14) from McKenzie added by Andrey Zabolotskiy, Jan 18 2023

A047711 High-temperature coefficients for internal energy for spin-1/2 Ising model on b.c.c. lattice.

Original entry on oeis.org

4, 48, 840, 19080, 501712, 14383256, 436774992, 13826204264
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A010571 (cubic), A047712 (f.c.c.), A001406 (partition function).

Formula

Sum_{n>=1} a(n) * v^(2*n-1) = v*q/2 + (1-v^2) * f'(v) / f(v), where f(v) = Sum_{n>=0} A001406(n) * v^(2*n) and q = 8 is the number of nearest neighbors. - Andrey Zabolotskiy, Feb 14 2022

Extensions

Name clarified and a(6)-a(8) added by Andrey Zabolotskiy, Feb 14 2022
Showing 1-7 of 7 results.