A002913
High temperature series for spin-1/2 Ising magnetic susceptibility on 3-dimensional simple cubic lattice.
Original entry on oeis.org
1, 6, 30, 150, 726, 3510, 16710, 79494, 375174, 1769686, 8306862, 38975286, 182265822, 852063558, 3973784886, 18527532310, 86228667894, 401225368086, 1864308847838, 8660961643254, 40190947325670, 186475398518726, 864404776466406, 4006394107568934, 18554916271112254, 85923704942057238
Offset: 0
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 381.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..32 (terms a(24), a(25) taken from the Campostrini et al. 2002 article by _Per H. Lundow_, terms a(26)-a(32) taken from the Toshiaki Fujiwara and Hiroaki Arisue's slides)
- P. Butera and M. Comi, N-vector spin models on the simple-cubic and the body-centered-cubic lattices: A study of the critical behavior of the susceptibility and of the correlation length by high-temperature series extended to order beta^21, Phys. Rev. B 56 (1997) 8212-8240; arXiv:hep-lat/9703018, 1997.
- P. Butera and M. Comi, Extension to order b23 of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices, BICOCCA/FT-00-09 (June 2000). Phys. Rev. B62 (2000) 14837-14843.
- M. Campostrini, Linked-Cluster Expansion of the Ising Model, Journal of Statistical Physics, 103 (2001), 369-394.
- M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, 25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice, Phys. Rev. E, 65 (2002), 66-127.
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- Steven R. Finch, Lenz-Ising Constants [broken link]
- Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
- M. E. Fisher and R. J. Burford, Theory of critical point scattering and correlations I: the Ising model, Phys. Rev. 156 (1967), 583-621.
- Toshiaki Fujiwara and Hiroaki Arisue (presenter), 3次元イジング模型の高温展開 (High-temperature expansion for the 3D Ising model), Computational Physics with CP-PACS 2002 Workshop [in Japanese].
- Toshiaki Fujiwara and Hiroaki Arisue (presenter), New algorithm of the high-temperature expansion for the Ising model in three dimensions, Asia-Pacific Mini-Workshop on Lattice QCD, Center for Computational Physics, University of Tsukuba, 2003: abstract, slides, source.
- D. S. Gaunt, High Temperature Series Analysis for the Three-Dimensional Ising Model: A Review of Some Recent Work, pp. 217-246 in: Phase Transitions: Cargèse 1980, eds. Maurice Lévy, Jean-Claude Le Guillou and Jean Zinn-Justin, Springer, Boston, MA, 1982.
- M. F. Sykes, D. G. Gaunt, P. D. Roberts and J. A. Wyles, High temperature series for the susceptibility of the Ising model, II. Three dimensional lattices, J. Phys. A 5 (1972) 640-652.
Cf. low-temperature series:
A002926 (ferromagnetic),
A002915 (antiferromagnetic).
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 01 2008
Several errors in the sequence were corrected by
Per H. Lundow, Jan 17 2011
A001393
High temperature series for spin-1/2 Ising free energy on 3-dimensional simple cubic lattice.
Original entry on oeis.org
1, 0, 3, 22, 192, 2046, 24853, 329334, 4649601, 68884356, 1059830112, 16809862992, 273374177222, 4539862959852, 76744615270821, 1317316023432372, 22913901542478978, 403242080061821802, 7169757254509112094, 128654570700129670404, 2327634530912450464791, 42424918919225263486322, 778469235834728913157632, 14371906938404203811137770
Offset: 0
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andreas Wipf, Statistical Approach to Quantum Field Theory, LNP 864, Springer, 2013.
A002908
High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on square lattice with nearest-neighbor interaction J at temperature T.
Original entry on oeis.org
2, 4, 8, 24, 84, 328, 1372, 6024, 27412, 128228, 613160, 2985116, 14751592, 73825416, 373488764, 1907334616, 9820757380, 50934592820, 265877371160, 1395907472968, 7366966846564, 39062802311672, 208015460898924, 1112050252939612, 5966352507546872
Offset: 1
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 386.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices and high density expansions, Phys. Rev. 133 (1964) A224-A239.
- Lars Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117 (1944).
- M. F. Sykes and M. E. Fisher, Antiferromagnetic susceptibility of the plane square and honeycomb Ising lattices, Physica, 28 (1962), 919-938.
-
series((1+v^2)*(1-(2/Pi)*(1-6*v^2+v^4)*EllipticK(4*v*(1-v^2)/(1+v^2)^2)/(1+v^2)^2)/2*v,v,50); # Sean A. Irvine, Nov 26 2017
-
u[h_]:=Coth[2h](1+(2/Pi)(2Tanh[2h]^2-1)EllipticK[(2Sinh[2h]/Cosh[2h]^2)^2]);
Table[SeriesCoefficient[u[ArcTanh[v]],{v,0,2n-1}],{n,10}]
(* Andrey Zabolotskiy, Sep 12 2017; see Onsager's eq. (116) *)
Rest[CoefficientList[Series[(1+x)/2 - (1 - 6*x + x^2)*EllipticK[(16*(-1 + x)^2*x)/(1 + x)^4] / (Pi*(1+x)), {x, 0, 25}], x]] (* Vaclav Kotesovec, Apr 27 2024 *)
A002916
High temperature series for spin-1/2 Ising specific heat on 3-dimensional simple cubic lattice.
Original entry on oeis.org
3, 33, 564, 8976, 155124, 2791308, 51382068, 962178084, 18258531348, 350143322088, 6772382631732, 131922552534036, 2585198190891636, 50919899448451512, 1007393565758096820, 20007153991627682124, 398699967207692643924, 7969220499183448073760, 159718349893920279061428
Offset: 0
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A010572
High-temperature coefficients for the internal energy for spin-1/2 Ising model on 4-d cubic lattice.
Original entry on oeis.org
4, 24, 432, 10512, 290552, 8800432, 284289160, 9621738448
Offset: 0
A047712
High-temperature coefficients for internal energy for spin-1/2 Ising model on f.c.c. lattice.
Original entry on oeis.org
6, 24, 132, 816, 5448, 38808, 290568, 2255232, 17981532, 146428728, 1213014960, 10192820592, 86687830596, 744919762584
Offset: 1
- M. E. Fisher and M. F. Sykes, Antiferromagnetic susceptibilities of the simple cubic and body-centered cubic Ising lattices, Physica, 28 (1962), 939-956.
- S. McKenzie, Extended high-temperature series expansions for the spin-s Ising model, J. Phys. A: Math. Gen., 16 (1983), 2875-2880. See table 1, column c(n); divide by 2 to get a(n).
- M. F. Sykes, J. L. Martin and D. L. Hunter, Specific heat of a three-dimensional Ising ferromagnet above the Curie temperature, Proc. Phys. Soc., 91 (1967), 671-677.
- Index entries for sequences related to f.c.c. lattice
A047711
High-temperature coefficients for internal energy for spin-1/2 Ising model on b.c.c. lattice.
Original entry on oeis.org
4, 48, 840, 19080, 501712, 14383256, 436774992, 13826204264
Offset: 1
Showing 1-7 of 7 results.
Comments