cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007239 Energy function for hexagonal lattice.

Original entry on oeis.org

3, 6, 12, 24, 54, 138, 378, 1080, 3186, 9642, 29784, 93552, 297966, 960294, 3126408, 10268688, 33989388, 113277582, 379833906, 1280618784, 4339003044, 14767407522, 50464951224, 173099580168, 595786322292, 2057106617226, 7123467773790, 24734460619704
Offset: 1

Views

Author

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 386.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002908.

Formula

See Eq. (32) of Sykes for the g.f. U(v). - Andrey Zabolotskiy, Feb 14 2022

Extensions

Terms a(21) and beyond from Andrey Zabolotskiy, Feb 14 2022

A002906 High temperature series for spin-1/2 Ising magnetic susceptibility on 2D square lattice.

Original entry on oeis.org

1, 4, 12, 36, 100, 276, 740, 1972, 5172, 13492, 34876, 89764, 229628, 585508, 1486308, 3763460, 9497380, 23918708, 60080156, 150660388, 377009364, 942106116, 2350157268, 5855734740, 14569318492, 36212402548, 89896870204
Offset: 0

Views

Author

Keywords

Comments

The zero-field susceptibility per spin is m^2/kT * Sum_{n >= 0} a(n) * v^n, where v = tanh(J/kT). (m is the magnetic moment of a single spin; this factor may be present or absent depending on the precise definition of the susceptibility.) The b-file has been obtained from the series by Guttmann and Jensen via the substitution t = v/(1-v^2). - Andrey Zabolotskiy, Feb 11 2022

References

  • C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 380.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
  • A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
  • B. G. Nickel, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002927 (low-temperature), A002908 (energy), A002920 (hexagonal lattice), A002910 (honeycomb), A002913 (cubic lattice), A005401 (Heisenberg).

Formula

a(n) ~ c * n^(3/4) * (1 + sqrt(2))^n, where c = 0.839697019... - Vaclav Kotesovec, May 04 2024

Extensions

Corrections and updates from Steven Finch
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 01 2008

A010571 High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on cubic lattice with nearest-neighbor interaction J at temperature T.

Original entry on oeis.org

3, 12, 120, 1368, 18300, 268728, 4179852, 67767744, 1133826324, 19443072084, 340085761968, 6046276240668, 108970501777080, 1986820814551056, 36587507853481908, 679619087721892176, 12720247240214281860, 239685390231729125004, 4543441582487318876664
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

Sum_{n>=1} a(n) * v^(2*n-1) = v*q/2 + (1-v^2) * f'(v) / f(v), where f(v) = Sum_{n>=0} A001393(n) * v^(2*n) and q = 6 is the number of nearest neighbors. - Andrey Zabolotskiy, Feb 14 2022

Extensions

New name from Andrey Zabolotskiy, Jan 14 2019
a(7) corrected and more terms added by Andrey Zabolotskiy, Feb 14 2022

A370953 Numerators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.

Original entry on oeis.org

1, 1, 4, 77, 1009, 101627, 1302779, 2513121979, 11291682179, 1354947005798, 23064317580681848, 20189102649892270054, 776220757551441546419, 641273428219629914673014, 5433381672262390009892530636, 1399751922597075578762073697769
Offset: 0

Views

Author

N. J. A. Sloane, Mar 10 2024

Keywords

Crossrefs

See A370954 for denominators.

Programs

  • Mathematica
    CoefficientList[With[{nmax = 7}, Exp[-Log[2]/2 + 1/(2 Pi) Integrate[Log[Cosh[2k]^2 + Sqrt[Sinh[2k]^4 + 1 - 2 Sinh[2k]^2 Cos[2\[Theta]] + O[k]^(2nmax+1)]], {\[Theta], 0, Pi}] + O[k]^(2nmax+1)]], k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 10 2024 *)
    CoefficientList[Cosh[2k] Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (Sinh[2k]/(2Cosh[2k]^2))^2}] + O[k]^32, k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 13 2024, using the g. f. from Gandhimohan M. Viswanathan *)

Formula

a(n) / A370954(n) ~ c * 2^(2*n) / (n^3 * log(1 + sqrt(2))^(2*n)), where c = 0.15662885... - Vaclav Kotesovec, May 02 2024

Extensions

Terms a(5) and beyond from Andrey Zabolotskiy, Mar 10 2024

A370954 Denominators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.

Original entry on oeis.org

1, 1, 3, 45, 315, 14175, 66825, 42567525, 58046625, 1993723875, 9280784638125, 2143861251406875, 21132346621010625, 4370553505709015625, 9086380738369043484375, 564653660170076273671875
Offset: 0

Views

Author

N. J. A. Sloane, Mar 10 2024

Keywords

Crossrefs

See A370953 for numerators.

Extensions

Terms a(5) and beyond from Andrey Zabolotskiy, Mar 10 2024

A002907 High temperature series in v = tanh(J/kT) for residual correlation function (correction to susceptibility) for the spin-1/2 Ising model on square lattice.

Original entry on oeis.org

2, 2, 20, 38, 146, 368, 1070, 2824, 7680, 19996, 53024, 136350, 355254, 906254, 2331416, 5909810, 15067236, 37992680, 96210436, 241564514, 608469654, 1522388638, 3818281784, 9525139886, 23806217352, 59237754234, 147621207142, 366533832540, 911151508282
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Susceptibility for square lattice.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f.: ((1-3*v)^2*xi(v) - (1-v)^2 + 2*v*u(v)) / (8*v^7*(1+v)^2), where xi(v) is the g.f. of A002906 and u(v) is the g.f. of A002908 (odd powers only!); the actual "residual correlation function" is the numerator of this expression [Sykes & Fisher]. - Andrey Zabolotskiy, Feb 28 2021

Extensions

New name and terms a(10) and beyond from Andrey Zabolotskiy, Feb 28 2021
Showing 1-6 of 6 results.