A007239
Energy function for hexagonal lattice.
Original entry on oeis.org
3, 6, 12, 24, 54, 138, 378, 1080, 3186, 9642, 29784, 93552, 297966, 960294, 3126408, 10268688, 33989388, 113277582, 379833906, 1280618784, 4339003044, 14767407522, 50464951224, 173099580168, 595786322292, 2057106617226, 7123467773790, 24734460619704
Offset: 1
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 386.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
A002906
High temperature series for spin-1/2 Ising magnetic susceptibility on 2D square lattice.
Original entry on oeis.org
1, 4, 12, 36, 100, 276, 740, 1972, 5172, 13492, 34876, 89764, 229628, 585508, 1486308, 3763460, 9497380, 23918708, 60080156, 150660388, 377009364, 942106116, 2350157268, 5855734740, 14569318492, 36212402548, 89896870204
Offset: 0
- C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 380.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-234 of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989.
- B. G. Nickel, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrey Zabolotskiy, Table of n, a(n) for n = 0..2043 (terms up to n = 116 from Fred Hucht)
- C. Domb, Ising model, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
- Steven R. Finch, Lenz-Ising Constants [broken link]
- Steven R. Finch, Lenz-Ising Constants [From the Wayback Machine]
- M. E. Fisher and R. J. Burford, Theory of critical point scattering and correlations I: the Ising model, Phys. Rev. 156 (1967), 583-621.
- S. Gartenhaus and W. S. McCullough, Higher order corrections for the quadratic Ising lattice susceptibility at criticality, Phys. Rev. B 38 (1988) 11688-11703.
- A. J. Guttmann, Asymptotic analysis of power-series expansions, pp. 1-13, 56-57, 142-143, 150-151 from of C. Domb and J. L. Lebowitz, editors, Phase Transitions and Critical Phenomena. Vol. 13, Academic Press, NY, 1989. (Annotated scanned copy)
- Tony Guttmann, Homepage. See Numerical Data, Ising square lattice susceptibility series, High temperature series.
- Iwan Jensen, Series for the Ising model
- B. Nickel, On the singularity structure of the 2D Ising model susceptibility, Journal of Physics A, Math. Gen. 32, 3889 (1999); Addendum, 33, 1693 (2000).
- M. F. Sykes, Some counting theorems in the theory of the Ising problem and the excluded volume problem, J. Math. Phys., 2 (1961), 52-62.
- M. F. Sykes, D. G. Gaunt, P. D. Roberts and J. A. Wyles, High temperature series for the susceptibility of the Ising model, I. Two dimensional lattices, J. Phys. A 5 (1972) 624-639.
- M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660.
- Peter Young, Coefficients in the series expansions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 01 2008
A010571
High temperature expansion of -u/J in odd powers of v = tanh(J/kT), where u is energy per site of the spin-1/2 Ising model on cubic lattice with nearest-neighbor interaction J at temperature T.
Original entry on oeis.org
3, 12, 120, 1368, 18300, 268728, 4179852, 67767744, 1133826324, 19443072084, 340085761968, 6046276240668, 108970501777080, 1986820814551056, 36587507853481908, 679619087721892176, 12720247240214281860, 239685390231729125004, 4543441582487318876664
Offset: 1
A370953
Numerators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.
Original entry on oeis.org
1, 1, 4, 77, 1009, 101627, 1302779, 2513121979, 11291682179, 1354947005798, 23064317580681848, 20189102649892270054, 776220757551441546419, 641273428219629914673014, 5433381672262390009892530636, 1399751922597075578762073697769
Offset: 0
-
CoefficientList[With[{nmax = 7}, Exp[-Log[2]/2 + 1/(2 Pi) Integrate[Log[Cosh[2k]^2 + Sqrt[Sinh[2k]^4 + 1 - 2 Sinh[2k]^2 Cos[2\[Theta]] + O[k]^(2nmax+1)]], {\[Theta], 0, Pi}] + O[k]^(2nmax+1)]], k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 10 2024 *)
CoefficientList[Cosh[2k] Exp[-x HypergeometricPFQ[{1, 1, 3/2, 3/2}, {2, 2, 2}, 16x] /. {x -> (Sinh[2k]/(2Cosh[2k]^2))^2}] + O[k]^32, k][[;; ;; 2]] // Numerator (* Andrey Zabolotskiy, Mar 13 2024, using the g. f. from Gandhimohan M. Viswanathan *)
A370954
Denominators of coefficients of the partition function per spin, lambda (divided by 2), in the very high temperature region, expressed as a power series in the parameter K^2, for the spin-1/2 Ising model on square lattice.
Original entry on oeis.org
1, 1, 3, 45, 315, 14175, 66825, 42567525, 58046625, 1993723875, 9280784638125, 2143861251406875, 21132346621010625, 4370553505709015625, 9086380738369043484375, 564653660170076273671875
Offset: 0
A002907
High temperature series in v = tanh(J/kT) for residual correlation function (correction to susceptibility) for the spin-1/2 Ising model on square lattice.
Original entry on oeis.org
2, 2, 20, 38, 146, 368, 1070, 2824, 7680, 19996, 53024, 136350, 355254, 906254, 2331416, 5909810, 15067236, 37992680, 96210436, 241564514, 608469654, 1522388638, 3818281784, 9525139886, 23806217352, 59237754234, 147621207142, 366533832540, 911151508282
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-6 of 6 results.
Comments