cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010690 Period 2: repeat (1,9).

Original entry on oeis.org

1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1, 9, 1
Offset: 0

Views

Author

Keywords

Comments

Digital roots of the nonzero square triangular numbers. - Ant King, Jan 21 2012
Continued fraction expansion of A176019. - R. J. Mathar, Mar 08 2012
Exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 5*x^2 + 5*x^3 + 15*x^4 + 15*x^5 + ... is the o.g.f. for A189976 (taken with an offset of 0). - Peter Bala, Mar 13 2015
Final digit of 9^n. - Martin Renner, Jun 11 2020
Decimal expansion of 19/99. - Stefano Spezia, Feb 09 2025

Examples

			0.191919191919191919191919191919191919191...
		

Crossrefs

Programs

  • Mathematica
    5+4*(-1)^# &/@Range[81] (* Ant King, Jan 21 2012 *)
  • PARI
    a(n)=1; if(n%2==1, 9, 1) \\ Felix Fröhlich, Aug 11 2014

Formula

G.f.: (1+9x)/((1-x)(1+x)). - R. J. Mathar, Nov 21 2011
a(n) = 9^n mod 10. - Martin Renner, Jun 11 2020
E.g.f.: cosh(x) + 9*sinh(x). - Stefano Spezia, Feb 09 2025
From Amiram Eldar, Jun 09 2025: (Start)
With offset 1:
Multiplicative with a(2^e) = 9, a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-3)). (End)