A010804 16th powers: a(n) = n^16.
0, 1, 65536, 43046721, 4294967296, 152587890625, 2821109907456, 33232930569601, 281474976710656, 1853020188851841, 10000000000000000, 45949729863572161, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616, 48661191875666868481
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
Crossrefs
Programs
-
Magma
[n^16: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
Maple
A010804 := n -> n^16; # M. F. Hasler, Jul 03 2025
-
Mathematica
Range[0, 15]^16 (* Alonso del Arte, Feb 16 2015 *)
-
Maxima
A010804(n):=n^16$ makelist(A010804(n),n,0,10); /* Martin Ettl, Nov 12 2012 */
-
PARI
A010804(n)=n^16 \\ Charles R Greathouse IV, Jun 28 2015
-
Python
A010804 = lambda n: n**16 # M. F. Hasler, Jul 03 2025
Formula
Completely multiplicative with a(p) = p^16 for prime p. Multiplicative with a(p^e) = p^(16e). - Jaroslav Krizek, Nov 01 2009
From Ilya Gutkovskiy, Feb 27 2017: (Start)
Dirichlet g.f.: zeta(s-16).
Sum_{n>=1} 1/a(n) = 3617*Pi^16/325641566250 = A013674. (End)
a(n) = A001016(n)^2. - Michel Marcus, Feb 28 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = 32767*zeta(16)/32768 = 16931177*Pi^16/1524374691840000. - Amiram Eldar, Oct 08 2020
Comments