cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010904 Pisot sequence E(4,14): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=14.

Original entry on oeis.org

4, 14, 49, 172, 604, 2121, 7448, 26154, 91841, 322504, 1132488, 3976785, 13964668, 49037590, 172197809, 604680724, 2123364868, 7456295833, 26183134320, 91943310482, 322863269121, 1133749589840, 3981215131600, 13980224615841, 49092217790004, 172389637059934
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Programs

  • Magma
    I:=[4, 14]; [n le 2 select I[n] else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..25]]; // Bruno Berselli, Sep 03 2013
    
  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n-1]^2/a[n-2] + 1/2]}, a ,{n, 30}] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 4, 14) \\ Colin Barker, Jul 27 2016

Formula

Theorem: a(0)=4, a(1)=14, a(2)=49; for n>2, a(n) = 4*a(n-1)-2*a(n-2)+a(n-3). Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. (Conjectured by Harvey P. Dale, May 02 2012.) - N. J. A. Sloane, Sep 09 2016