cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010912 Pisot sequences E(3,7), P(3,7).

Original entry on oeis.org

3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691, 124155792775
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    XY:=[3, 7]; [n le 2 select XY[n] else Ceiling(Self(n-1)^2/Self(n-2)-1/2): n in [1..32]]; // Klaus Brockhaus, Nov 17 2010
    
  • Magma
    a:=1; b:=1; c:=1; S:=[]; for n in [1..32] do a+:=b; b+:=c; c+:=a; Append(~S, c); end for; S; // Klaus Brockhaus, Nov 17 2010
    
  • Mathematica
    a=1;b=1;c=1;Table[a+=b;b+=c;c+=a,{n,50}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2010 *)
  • PARI
    Vec((3-2*x+x^2)/(1-3*x+2*x^2-x^3) + O(x^30)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) (holds at least up to n = 1000 but is not known to hold in general).
Empirical g.f.: (3-2*x+x^2)/(1-3*x+2*x^2-x^3). - Colin Barker, Feb 19 2012
Since Pisot (1938) showed that E(3,k) always satisfies a linear recurrence, presumably it would not be difficult to prove that the above conjectures are correct. - N. J. A. Sloane, Jul 30 2016
Theorem: a(n) = 3 a(n - 1) - 2 a(n - 2) + a(n - 3) for n>=3. Proved using the PtoRv program of Ekhad-Sloane-Zeilberger, and implies the above conjectures. - N. J. A. Sloane, Sep 09 2016