cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A020746 Pisot sequence T(3,7), a(n) = floor(a(n-1)^2/a(n-2)).

Original entry on oeis.org

3, 7, 16, 36, 81, 182, 408, 914, 2047, 4584, 10265, 22986, 51471, 115255, 258081, 577899, 1294040, 2897633, 6488421, 14528964, 32533461, 72849384, 163125366, 365272615, 817923579, 1831505986, 4101133972, 9183316890, 20563412382, 46045882316, 103106587509
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Iv:=[3,7]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 7, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 04 2016 *)
    nxt[{a_,b_}]:={b,Floor[b^2/a]}; NestList[nxt,{3,7},30][[All,1]] (* Harvey P. Dale, Oct 11 2020 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 3, 7) \\ Colin Barker, Jul 29 2016

Formula

Conjectured g.f.: (-x^5+x^4-x^3+x^2-2*x+3)/((1-x)*(1-2*x-x^3-x^5)). - Ralf Stephan, May 12 2004
I believe that David Boyd has proved that this g.f. is correct. - N. J. A. Sloane, Aug 11 2016

A022029 a(n) = 3*a(n-1) + a(n-2) - a(n-3) - a(n-5).

Original entry on oeis.org

4, 13, 42, 135, 433, 1388, 4449, 14260, 45706, 146496, 469546, 1504979, 4823727, 15460908, 49554976, 158832563, 509086778, 1631714194, 5229935889, 16762880107, 53728029453, 172207945799, 551957272549
Offset: 0

Views

Author

Keywords

Comments

Sequence agrees with A010919 for n <= 35 only.

Crossrefs

Cf. A010919.

Formula

G.f.: (4+x-x^2-x^4)/(1-3x-x^2+x^3+x^5). - R. J. Mathar, Oct 25 2008

A275904 Order of homogeneous linear recurrence satisfied by the Pisot sequence T(n, n^2-n+1).

Original entry on oeis.org

1, 2, 6, 36, 2048
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2016

Keywords

Comments

Degree of denominator of minimal g.f. for T(n, n^2-n+1).
Conjecture: a(6) = 6852224. The conjectured generating function for T(6,31) is A(x)/(1+x - x*A(x)) where A(x) = 6 + x - x^2 - x^4 - x^22 - x^1130 - x^6852224 (and as usual there is a common factor of (1+x) in numerator and denominator). - David Boyd, Aug 12 2016.

Examples

			T(1,1) is the all-ones sequence, with g.f. 1/(1-x).
T(2,3) is 2,3,4,5,6,... with g.f. (2-x)/(1-2*x+x^2).
T(3,7) is A020746, with a linear recurrence of order 6.
T(4,13) is A010919, with a linear recurrence of order 36.
T(5,21) is A010925, with a linear recurrence of order 2048.
		

References

Crossrefs

A278692 Pisot sequence T(4,14).

Original entry on oeis.org

4, 14, 49, 171, 596, 2077, 7238, 25223, 87897, 306303, 1067403, 3719680, 12962320, 45171020, 157411717, 548547468, 1911575138, 6661446313, 23213770727, 80895217952, 281903201529, 982374694626, 3423373822671, 11929753885009, 41572739387791, 144872448909191, 504850696923520, 1759300875378480
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Crossrefs

Cf. A008776 for definitions of Pisot sequences.
Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)), A277084 (Pisot sequence L(4,14)).

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n - 1]^2/a[n - 2]]}, a, {n, 27}]
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=4; v[2]=14; for(i=3,#v, v[i]=v[i-1]^2\v[i-2]); v \\ Charles R Greathouse IV, Nov 28 2016
    
  • Python
    from itertools import islice
    def A278692_gen(): # generator of terms
        a, b = 4, 14
        yield from (a,b)
        while True:
            a, b = b, b**2//a
            yield b
    A278692_list = list(islice(A278692_gen(),30)) # Chai Wah Wu, Dec 06 2023

Formula

a(n) = floor(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.
Conjectures: (Start)
G.f.: (4 - 2*x + x^2 - x^3)/(1 - 4*x + 2*x^2 - x^3 + x^4).
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4). (End)
Showing 1-4 of 4 results.