cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010971 a(n) = binomial(n,18).

Original entry on oeis.org

1, 19, 190, 1330, 7315, 33649, 134596, 480700, 1562275, 4686825, 13123110, 34597290, 86493225, 206253075, 471435600, 1037158320, 2203961430, 4537567650, 9075135300, 17672631900, 33578000610, 62359143990, 113380261800, 202112640600, 353697121050, 608359048206
Offset: 18

Views

Author

Keywords

Comments

Coordination sequence for 18-dimensional cyclotomic lattice Z[zeta_19].
Product of 18 consecutive numbers divided by 18!. - Artur Jasinski, Dec 02 2007
In this sequence only 19 is prime. - Artur Jasinski, Dec 02 2007
With a different offset, number of n-permutations (n>=18) of 2 objects: u,v, with repetition allowed, containing exactly (18) u's. - Zerinvary Lajos, Aug 04 2008

Crossrefs

Programs

  • Magma
    [Binomial(n, 18): n in [18..50]]; // Vincenzo Librandi, Aug 08 2017
    
  • Maple
    seq(binomial(n,18),n=18..38); # Zerinvary Lajos, Aug 04 2008
  • Mathematica
    Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)(n+15)(n+16)(n+17)/18!,{n,1,100}] (* Artur Jasinski, Dec 02 2007 *)
    Table[Binomial[n, 18], {n, 18, 50}] (* Vincenzo Librandi, Aug 08 2017 *)
  • PARI
    for(n=18,50, print1(binomial(n,18), ", ")) \\ G. C. Greubel, Nov 23 2017

Formula

a(n+17) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)*(n+10)*(n+11)*(n+12)*(n+13)*(n+14)*(n+15)*(n+16)*(n+17)/18!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^18/(1-x)^19. - Zerinvary Lajos, Aug 04 2008; R. J. Mathar, Jul 07 2009
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=18} 1/a(n) = 18/17.
Sum_{n>=18} (-1)^n/a(n) = A001787(18)*log(2) - A242091(18)/17! = 2359296*log(2) - 556571077357/340340 = 0.9519925176... (End)

Extensions

Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009