A010976 Binomial coefficient C(n,23).
1, 24, 300, 2600, 17550, 98280, 475020, 2035800, 7888725, 28048800, 92561040, 286097760, 834451800, 2310789600, 6107086800, 15471286560, 37711260990, 88732378800, 202112640600, 446775310800, 960566918220, 2012616400080, 4116715363800, 8233430727600
Offset: 23
Links
- T. D. Noe, Table of n, a(n) for n = 23..1000
- Index entries for linear recurrences with constant coefficients, signature (24,-276,2024,-10626,42504,-134596,346104,-735471,1307504,-1961256,2496144,-2704156,2496144,-1961256,1307504,-735471,346104,-134596,42504,-10626,2024,-276,24,-1).
Crossrefs
Programs
-
Magma
[Binomial(n,23): n in [23..90]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,23), n=23..43); # Zerinvary Lajos, Aug 04 2008
-
Mathematica
Table[Binomial[n,23],{n,23,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
PARI
for(n=23, 50, print1(binomial(n,23), ", ")) \\ G. C. Greubel, Nov 23 2017
Formula
a(n) = n/(n-23) * a(n-1) for n > 23. - Vincenzo Librandi, Mar 26 2011
G.f.: x^23/(1-x)^24. - G. C. Greubel, Nov 23 2017
From Amiram Eldar, Dec 11 2020: (Start)
Sum_{n>=23} 1/a(n) = 23/22.