A010977 a(n) = binomial coefficient C(n,24).
1, 25, 325, 2925, 20475, 118755, 593775, 2629575, 10518300, 38567100, 131128140, 417225900, 1251677700, 3562467300, 9669554100, 25140840660, 62852101650, 151584480450, 353697121050, 800472431850, 1761039350070, 3773655750150, 7890371113950, 16123801841550
Offset: 24
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 24..1000
- Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
Crossrefs
Programs
-
Magma
[ Binomial(n,24): n in [24..90]]; // Vincenzo Librandi, Mar 26 2011
-
Maple
seq(binomial(n,24),n=24..41); # Zerinvary Lajos, Aug 04 2008
-
Mathematica
Table[Binomial[n,24],{n,24,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
PARI
x='x+O('x^50); Vec(x^24/(1-x)^25) \\ G. C. Greubel, Nov 23 2017
Formula
G.f.: x^24/(1-x)^25. - Zerinvary Lajos, Aug 04 2008 [Corrected by Georg Fischer, May 19 2019]
a(n) = n/(n-24) * a(n-1), n > 24. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 11 2020: (Start)
Sum_{n>=24} 1/a(n) = 24/23.