A010978 a(n) = binomial(n,25).
1, 26, 351, 3276, 23751, 142506, 736281, 3365856, 13884156, 52451256, 183579396, 600805296, 1852482996, 5414950296, 15084504396, 40225345056, 103077446706, 254661927156, 608359048206, 1408831480056, 3169870830126, 6943526580276, 14833897694226, 30957699535776
Offset: 25
Links
- T. D. Noe, Table of n, a(n) for n = 25..1000
- Index entries for linear recurrences with constant coefficients, signature (26, -325, 2600, -14950, 65780, -230230, 657800, -1562275, 3124550, -5311735, 7726160, -9657700, 10400600, -9657700, 7726160, -5311735, 3124550, -1562275, 657800, -230230, 65780, -14950, 2600, -325, 26, -1).
Programs
-
Magma
[Binomial(n, 25): n in [25..50]]; // Vincenzo Librandi, Jun 12 2013
-
Maple
seq(binomial(n,25),n=25..41); # Zerinvary Lajos, Aug 18 2008
-
Mathematica
Table[Binomial[n,25],{n,25,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
PARI
x='x+O('x^50); Vec(x^25/(1-x)^26) \\ G. C. Greubel, Nov 23 2017
Formula
From Zerinvary Lajos, Aug 18 2008: (Start)
a(n) = C(n,25), n >= 25.
G.f.: x^25/(1-x)^26. (End) [G.f. corrected by Georg Fischer, May 19 2019]
From Amiram Eldar, Dec 11 2020: (Start)
Sum_{n>=25} 1/a(n) = 25/24.