A010979 Binomial coefficient C(n,26).
1, 27, 378, 3654, 27405, 169911, 906192, 4272048, 18156204, 70607460, 254186856, 854992152, 2707475148, 8122425444, 23206929840, 63432274896, 166509721602, 421171648758, 1029530696964, 2438362177020, 5608233007146, 12551759587422, 27385657281648
Offset: 26
Links
- T. D. Noe, Table of n, a(n) for n = 26..1000
- Index entries for linear recurrences with constant coefficients, signature (27, -351, 2925, -17550, 80730, -296010, 888030, -2220075, 4686825, -8436285, 13037895, -17383860, 20058300, -20058300, 17383860, -13037895, 8436285, -4686825, 2220075, -888030, 296010, -80730, 17550, -2925, 351, -27, 1).
Programs
-
Magma
[Binomial(n, 26): n in [26..60]]; // Vincenzo Librandi, Jun 12 2013
-
Maple
seq(binomial(n,26),n=26..41); # Zerinvary Lajos, Aug 18 2008
-
Mathematica
Table[Binomial[n,26],{n,26,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
PARI
x='x+O('x^50); Vec(x^26/(1-x)^27) \\ G. C. Greubel, Nov 23 2017
Formula
G.f.: x^26/(1-x)^27. - Zerinvary Lajos, Aug 18 2008; adapted to offset by Enxhell Luzhnica, Jan 21 2017
From Amiram Eldar, Dec 11 2020: (Start)
Sum_{n>=26} 1/a(n) = 26/25.