A010986 Binomial coefficient C(n,33).
1, 34, 595, 7140, 66045, 501942, 3262623, 18643560, 95548245, 445891810, 1917334783, 7669339132, 28760021745, 101766230790, 341643774795, 1093260079344, 3348108992991, 9847379391150, 27900908274925, 76360380541900, 202355008436035, 520341450264090
Offset: 33
Links
- T. D. Noe, Table of n, a(n) for n = 33..1000
- Index entries for linear recurrences with constant coefficients, signature (34, -561, 5984, -46376, 278256, -1344904, 5379616, -18156204, 52451256, -131128140, 286097760, -548354040, 927983760, -1391975640, 1855967520, -2203961430, 2333606220, -2203961430, 1855967520, -1391975640, 927983760, -548354040, 286097760, -131128140, 52451256, -18156204, 5379616, -1344904, 278256, -46376, 5984, -561, 34, -1).
Programs
-
Magma
[Binomial(n, 33): n in [33..70]]; // Vincenzo Librandi, Jun 12 2013
-
Maple
seq(binomial(n,33),n=33..55); # Zerinvary Lajos, Dec 19 2008
-
Mathematica
Table[Binomial[n,33],{n,33,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2011 *)
-
PARI
for(n=33, 60, print1(binomial(n,33), ", ")) \\ G. C. Greubel, Nov 23 2017
Formula
G.f.: x^33/(1-x)^34. - Zerinvary Lajos, Dec 19 2008; adapted to offset by Enxhell Luzhnica, Jan 23 2017
From Amiram Eldar, Dec 12 2020: (Start)
Sum_{n>=33} 1/a(n) = 33/32.