cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011245 a(n) = (n+1)*(2*n+1)*(3*n+1)*(4*n+1).

Original entry on oeis.org

1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225, 196840, 293601, 422280, 589225, 801360, 1066185, 1391776, 1786785, 2260440, 2822545, 3483480, 4254201, 5146240, 6171705, 7343280, 8674225, 10178376, 11870145, 13764520, 15877065, 18223920, 20821801, 23688000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033593.

Programs

  • GAP
    List([0..30], n-> (n+1)*(2*n+1)*(3*n+1)*(4*n+1) ); # G. C. Greubel, Mar 04 2020
  • Magma
    [&*[s*n+1: s in [1..4]]: n in [0..25]]; // Bruno Berselli, May 23 2011
    
  • Maple
    seq( mul(j*n+1, j=1..4), n=0..30); # G. C. Greubel, Mar 04 2020
  • Mathematica
    Table[Times@@(Range[4]n+1),{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,120,945,3640,9945}, 30] (* Harvey P. Dale, Oct 05 2012 *)
  • PARI
    a(n)=24*n^4+50*n^3+35*n^2+10*n+1 \\ Charles R Greathouse IV, May 23 2011
    
  • Sage
    [product(j*n+1 for j in (1..4)) for n in (0..30)] # G. C. Greubel, Mar 04 2020
    

Formula

a(n) = A033593(-n).
G.f.: (1 + 115*x + 355*x^2 + 105*x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(0)=1, a(1)=120, a(2)=945, a(3)=3640, a(4)=9945, a(n) = 5*a(n-1)- 10*a(n-2)+ 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Oct 05 2012
E.g.f.: (1 + 119*x + 353*x^2 + 194*x^3 + 24*x^4)*exp(x). - G. C. Greubel, Mar 04 2020
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (4/3 - 3*sqrt(3)/4)*Pi + 12*log(2) - 27*log(3)/4.
Sum_{n>=0} (-1)^n/a(n) = (1 + 4*sqrt(2)/3 - 3*sqrt(3)/2)*Pi - 14*log(2)/3 - 8*sqrt(2)*log(sqrt(2)-1)/3. (End)