A256268
Table of k-fold factorials, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0
1 1 1 1 1 1 1... A000012
1 1 2 6 24 120 720... A000142
1 1 3 15 105 945 10395... A001147
1 1 4 28 280 3640 58240... A007559
1 1 5 45 585 9945 208845... A007696
1 1 6 66 1056 22176 576576... A008548
1 1 7 91 1729 43225 1339975... A008542
1 1 8 120 2640 76560 2756160... A045754
1 1 9 153 3825 126225 5175225... A045755
1 1 10 190 5320 196840 9054640... A045756
1 1 11 231 7161 293601 14977651... A144773
-
Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n-1]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
-
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
-
T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
-
T(n,k) = prod(j=0, n-1, j*k+1);
for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
-
[[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
A142589
Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0
The transpose of the array is:
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, ... A011199
1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225,... A011245
1, 720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
/ | \ \
A000142 A001147 A007559 A007696
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
-
T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
-
T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
-
T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
def T(n, k):
if (k==0 and n==0): return 1
else: return product(j*k+1 for j in (0..n))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020
A033593
a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).
Original entry on oeis.org
1, 0, 105, 880, 3465, 9576, 21505, 42120, 74865, 123760, 193401, 288960, 416185, 581400, 791505, 1053976, 1376865, 1768800, 2238985, 2797200, 3453801, 4219720, 5106465, 6126120, 7291345, 8615376, 10112025, 11795680, 13681305, 15784440, 18121201, 20708280, 23562945
Offset: 0
-
[ 24*n^4-50*n^3+35*n^2-10*n+1: n in [0..40]]; // Vincenzo Librandi, Jan 30 2011
-
[&*[s*n-1: s in [1..4]]: n in [0..40]]; // Bruno Berselli, May 23 2011
-
1, seq( n^4*pochhammer((n-1)/n, 4), n=1..40); # G. C. Greubel, Mar 05 2020
-
Table[1-10 n+35 n^2-50 n^3+24 n^4,{n,0,40}] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,0,105,880,3465}, 40] (* Harvey P. Dale, Jan 29 2011 & Apr 26 2011 *)
-
a(n)=24*n^4-50*n^3+35*n^2-10*n+1 \\ Charles R Greathouse IV, May 23 2011
-
[1]+[n^4*rising_factorial((n-1)/n, 4) for n in (1..40)] # G. C. Greubel, Mar 05 2020
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Showing 1-4 of 4 results.
Comments