cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011270 Hybrid binary rooted trees with n nodes whose root is labeled by "n".

Original entry on oeis.org

1, 1, 4, 18, 90, 481, 2690, 15547, 92124, 556664, 3417062, 21248966, 133576724, 847465593, 5419399722, 34895368578, 226050057378, 1472170887755, 9633297762870, 63305402213336, 417612181048826, 2764492667188504, 18358282050480384, 122265756020847943
Offset: 0

Views

Author

pallo(AT)u-bourgogne.fr (Jean Pallo)

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 18*x^3 + 90*x^4 + 481*x^5 + 2690*x^6 + 15547*x^7 + 92124*x^8 + 556664*x^9 + 3417062*x^10 + ...
where x = x*A(x) - x^2*A(x)^2/(1 - x*A(x))^2.
		

Crossrefs

Cf. A011272.

Programs

  • Maple
    G:= proc(n) option remember; if n<=0 then 1 else convert(series(
          (x^2*G(n-1)^3 +x*G(n-1)^2 +1)/ (1-x), x=0, n+1), polynom) fi
        end:
    a:= n-> coeff(1+x*G(n-1)^2, x, n):
    seq(a(n), n=0..20); # Alois P. Heinz, Aug 22 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1], (
          6*n*(210*n^2-411*n+163)*a(n-1)-4*(n-2)*(7*n-6)*(5*n-3)*a(n-2)
          +2*(n-3)*(2*n-3)*(35*n-16)*a(n-3))/(5*n*(n+1)*(35*n-51)))
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, May 18 2013
  • Mathematica
    a[0] = 1; a[n_] := n*HypergeometricPFQ[{1-n, n+1, n+2}, {3/2, 2}, -1/4]; Table[ a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)

Formula

G.f.: = 1+x*G(x)^2, where G(x) is g.f. for A007863.
Reversion of x - (x/(1 - x))^2 = 0, 1, -1, -2, -3, -4, -5, ... - Olivier Gérard, Jul 05 2001
a(n) = (2/(n+2))*Sum_{j=0...n} binomial(n+j+1, n+1)*binomial(n+j+2, n-j). - Vladimir Kruchinin, Dec 24 2010
G.f. A(x) satisfies: A(x) = 1/(1 - Sum_{k>=1} k*x^k*A(x)^k). - Ilya Gutkovskiy, Apr 10 2018
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} n^(n-1) * x^n*A(x)^(n+1) / (1 + (n-1)*x*A(x))^(n+1). - Paul D. Hanna, Oct 08 2023
a(n) ~ sqrt((35 + (869750 - 5250*sqrt(105))^(1/3) + 5*(14*(497 + 3*sqrt(105)))^(1/3))/525) / (sqrt(Pi) * n^(3/2) * ((2 - 104/(-181 + 105*sqrt(105))^(1/3) + (-181 + 105*sqrt(105))^(1/3))/6)^n). - Vaclav Kotesovec, Oct 08 2023