cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011546 Decimal expansion of Pi rounded to n places.

Original entry on oeis.org

3, 31, 314, 3142, 31416, 314159, 3141593, 31415927, 314159265, 3141592654, 31415926536, 314159265359, 3141592653590, 31415926535898, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979324, 3141592653589793238, 31415926535897932385, 314159265358979323846
Offset: 0

Views

Author

Keywords

Comments

Scherzer (2012) writes: "The 17th-most common 10-digit password is 3141592654 (for you non-math nerds, those are the first [ten] digits of Pi)." The information comes from an analysis of expired ATM PIN codes conducted by Nick Berry of Data Genetics. - Alonso del Arte, Sep 21 2012

Examples

			a(4) = floor(10^4 * Pi + 0.5) = 31416.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) Digits:= n+20;
           round(10^n * Pi)
        end:
    seq(a(n), n=0..20); # Alois P. Heinz, Mar 11 2016
  • Mathematica
    Module[{nn=20,pid},pid=RealDigits[Pi,10,nn+2][[1]];Table[Floor[ (FromDigits[ Take[pid,n+1]])/10+1/2],{n,nn}]] (* Harvey P. Dale, Oct 09 2017 *)
    Round[Pi*10^Range[0, 20]] (* Paolo Xausa, Jul 08 2025 *)
  • PARI
    a(n)=round(Pi*10^n) \\ Charles R Greathouse IV, Sep 21 2012

Formula

a(n) = floor(10^n * Pi + 0.5).

A011544 Decimal expansion of e rounded to n places.

Original entry on oeis.org

3, 27, 272, 2718, 27183, 271828, 2718282, 27182818, 271828183, 2718281828, 27182818285, 271828182846, 2718281828459, 27182818284590, 271828182845905, 2718281828459045, 27182818284590452, 271828182845904524, 2718281828459045235, 27182818284590452354, 271828182845904523536
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Extensions

More terms from Paolo Xausa, Jul 08 2025

A011548 Decimal expansion of sqrt(2) rounded to n places.

Original entry on oeis.org

1, 14, 141, 1414, 14142, 141421, 1414214, 14142136, 141421356, 1414213562, 14142135624, 141421356237, 1414213562373, 14142135623731, 141421356237310, 1414213562373095, 14142135623730950, 141421356237309505, 1414213562373095049, 14142135623730950488, 141421356237309504880
Offset: 0

Views

Author

Keywords

References

  • W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976.

Crossrefs

Programs

  • Mathematica
    Round[Table[N[Sqrt[2], k] 10^(k - 1), {k, 20}]] (* Vincenzo Librandi, Aug 17 2013 *)
    Module[{nn=20,s},s=RealDigits[Sqrt[2],10,nn+1][[1]];Table[Round[ FromDigits[ Take[ s,n+1]]/10],{n,nn}]] (* Harvey P. Dale, Apr 04 2019 *)
  • Python
    from math import isqrt
    def A011548(n): return (m:=isqrt(k:=10**(n<<1)<<1))+int((k-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 29 2022
Showing 1-3 of 3 results.