A283158
Numbers k such that A011544(k-1) is a prime.
Original entry on oeis.org
1, 85, 555, 1508, 1781, 4224, 7037, 43740
Offset: 1
- Eric Weisstein's World of Mathematics, e-Prime
A011546
Decimal expansion of Pi rounded to n places.
Original entry on oeis.org
3, 31, 314, 3142, 31416, 314159, 3141593, 31415927, 314159265, 3141592654, 31415926536, 314159265359, 3141592653590, 31415926535898, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979324, 3141592653589793238, 31415926535897932385, 314159265358979323846
Offset: 0
a(4) = floor(10^4 * Pi + 0.5) = 31416.
- Paolo Xausa, Table of n, a(n) for n = 0..995
- Mohammad K. Azarian, Al-Risala al-Muhitiyya: A Summary, (The Treatise on the Circumference), Missouri Journal of Mathematical Sciences, Vol. 22, No. 2, 2010, pp. 64-85.
- Lisa Scherzer, "Cracking Your PIN Code: Easy as 1-2-3-4", The Exchange, Sep 21 2012.
-
a:= proc(n) Digits:= n+20;
round(10^n * Pi)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Mar 11 2016
-
Module[{nn=20,pid},pid=RealDigits[Pi,10,nn+2][[1]];Table[Floor[ (FromDigits[ Take[pid,n+1]])/10+1/2],{n,nn}]] (* Harvey P. Dale, Oct 09 2017 *)
Round[Pi*10^Range[0, 20]] (* Paolo Xausa, Jul 08 2025 *)
-
a(n)=round(Pi*10^n) \\ Charles R Greathouse IV, Sep 21 2012
A011543
Decimal expansion of e truncated to n places.
Original entry on oeis.org
2, 27, 271, 2718, 27182, 271828, 2718281, 27182818, 271828182, 2718281828, 27182818284, 271828182845, 2718281828459, 27182818284590, 271828182845904, 2718281828459045, 27182818284590452, 271828182845904523, 2718281828459045235, 27182818284590452353, 271828182845904523536
Offset: 0
-
Module[{nn=30,edgs},edgs=RealDigits[E,10,nn][[1]];Table[ FromDigits[ Take[ edgs, n]],{n,nn}]] (* Harvey P. Dale, Oct 04 2017 *)
-
a(n) = floor(exp(1)*10^n); \\ Michel Marcus, Mar 08 2015
-
from sympy import E
def a(n): return int(E*10**n)
print([a(n) for n in range(21)]) # Michael S. Branicky, Feb 27 2021
A011548
Decimal expansion of sqrt(2) rounded to n places.
Original entry on oeis.org
1, 14, 141, 1414, 14142, 141421, 1414214, 14142136, 141421356, 1414213562, 14142135624, 141421356237, 1414213562373, 14142135623731, 141421356237310, 1414213562373095, 14142135623730950, 141421356237309505, 1414213562373095049, 14142135623730950488, 141421356237309504880
Offset: 0
- W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976.
-
Round[Table[N[Sqrt[2], k] 10^(k - 1), {k, 20}]] (* Vincenzo Librandi, Aug 17 2013 *)
Module[{nn=20,s},s=RealDigits[Sqrt[2],10,nn+1][[1]];Table[Round[ FromDigits[ Take[ s,n+1]]/10],{n,nn}]] (* Harvey P. Dale, Apr 04 2019 *)
-
from math import isqrt
def A011548(n): return (m:=isqrt(k:=10**(n<<1)<<1))+int((k-m*(m+1)<<2)>=1) # Chai Wah Wu, Jul 29 2022
A011552
Decimal expansion of phi rounded to n places.
Original entry on oeis.org
2, 16, 162, 1618, 16180, 161803, 1618034, 16180340, 161803399, 1618033989, 16180339887, 161803398875, 1618033988750, 16180339887499, 161803398874989, 1618033988749895, 16180339887498948, 161803398874989485, 1618033988749894848, 16180339887498948482, 161803398874989484820
Offset: 0
A085830
Least number k such that (10^n)^k < k!.
Original entry on oeis.org
2, 25, 269, 2714, 27177, 271822, 2718274, 27182809, 271828173, 2718281817, 27182818272, 271828182832, 2718281828444, 27182818284575, 271828182845887, 2718281828459027, 27182818284590433, 271828182845904503
Offset: 0
-
LogBaseBStirling[b_, n_] := Block[{}, N[ Log[b, 2*Pi*n]/2 + n*Log[b, n/E] + Log[b, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)], 64]]; f[0] = 2; f[n_] := f[n] = Block[{k = 10*g[n - 1]}, While[ LogBaseBStirling[10^n, k] <= k, k++ ]; k]; Table[ f[n], {n, 1, 18}]
Showing 1-6 of 6 results.
Comments