cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A175830 Number of real-valued zeros of the polynomial whose coefficients are the leading n+1 decimal digits of Euler's constant, A011543(n).

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Michel Lagneau, Dec 05 2010

Keywords

Comments

a(n) is the number of real-valued zeros of the polynomial P(n,x) = sum_{k=0..n} e(k) x^k where e = 2.7182818... and A011543(n) = sum_{k>=0} e(k)*10^k.

Examples

			a(0) = 0 because 2 => P(0,x)=2 is a constant and has no real root.
a(2) = 2  because 271 => P(2,x) = 1+7x + 2x^2 has 2 real roots.
a(13) = 3 because 27182818284590  => P(13,x) = 9x +5x^2 +4x^3 +8x^4 +2x^5 +8x^6 +x^7 +8x^8 +2x^9 +8x^10 +x^11 +7x^12 +2x^13 has 3 real roots, -3.664218401…, -0.7829315178… and 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory):Digits:=50: T:=array(1..45):for zz from 0 to 43 do:n:=floor(exp(1)*10^zz):
      for i from 1 to 43 do: T[i]:=0:od: l:=length(n) : n0:=n:for m from 1 to l do:q:=n0:u:=irem(q,
      10):v:=iquo(q, 10):n0:=v :u: T[m]:=u:od: x:=fsolve(T[1]+ T[2]*z + T[3]*z^2+
      T[4]*z^3+ T[5]*z^4 + T[6]*z^5 + T[7]*z^6 + T[8]*z^7 + T[9]*z^8 + T[10]*z^9+
      T[11]*z^10+ T[12]*z^11 + T[13]*z^12 + T[14]*z^13 + T[15]*z^14+ T[16]*z^15+ T[17]*z^16 + T[18]*z^17 + T[19]*z^18 + T[20]*z^19 + T[21]*z^20 + T[22]*z^21+ T[23]*z^22+ T[24]*z^23 + T[25]*z^24 + T[26]*z^25+ T[27]*z^26+ T[28]*z^27+ T[29]*z^28 + T[30]*z^29 + T[31]*z^30+ T[32]*z^31 + T[33]*z^32 + T[34]*z^33+ T[35]*z^34+ T[36]*z^35 + T[37]*z^36 + T[38]*z^37+ T[39]*z^38 + T[40]*z^39+ T[41]*z^40+ T[42]*z^41 + T[43]*z^42,  z, real):x1:=[x]: x2:=nops(x1): printf ( "%d %d %d\n",zz,n,x2):od: ~

A276196 Smallest prime >= decimal expansion of e truncated to n places (A011543).

Original entry on oeis.org

2, 29, 271, 2719, 27191, 271829, 2718281, 27182839, 271828199, 2718281831, 27182818309, 271828182863, 2718281828489, 27182818284617, 271828182845909, 2718281828459051, 27182818284590483, 271828182845904533, 2718281828459045269, 27182818284590452387, 271828182845904523609
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2016

Keywords

Examples

			a(5) = 271829, since this is the smallest prime >= floor(e*10^5) = 271828.
e = 2.71828182845904523536028747135266249775724...
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[Floor[E 10^n] - 1], {n, 0, 20}]

Formula

a(n) = A007918(A011543(n)).
a(n) = A000040(A000720(A011543(n)-1)+1).
a(A064118(n)-1) = A007512(n).

A139260 Decimal expansion of Euler's constant (or Euler-Mascheroni constant) gamma truncated to n places.

Original entry on oeis.org

5, 57, 577, 5772, 57721, 577215, 5772156, 57721566, 577215664, 5772156649, 57721566490, 577215664901, 5772156649015, 57721566490153, 577215664901532, 5772156649015328, 57721566490153286, 577215664901532860
Offset: 1

Views

Author

Omar E. Pol, May 01 2008

Keywords

Examples

			n ... Successive digits of a(n)
1 ............ ( 5 )
2 ......... . ( 5 7 )
3 .......... ( 5 7 7 )
4 ......... ( 5 7 7 2 )
5 ........ ( 5 7 7 2 1 )
6 ....... ( 5 7 7 2 1 5 )
7 ...... ( 5 7 7 2 1 5 6 )
8 ..... ( 5 7 7 2 1 5 6 6 )
9 .... ( 5 7 7 2 1 5 6 6 4 )
10 .. ( 5 7 7 2 1 5 6 6 4 9 )
		

Crossrefs

Decimal expansion of gamma: A001620. Cf. A011543, A011545 A011551, A139258, A139259, A139261.

Programs

  • Mathematica
    With[{em=RealDigits[EulerGamma,10,20][[1]]},Table[FromDigits[Take[ em,n]], {n,20}]] (* Harvey P. Dale, Nov 22 2011 *)

A138115 Triangle read by rows: row n lists the first n digits of the decimal expansion of e.

Original entry on oeis.org

2, 2, 7, 2, 7, 1, 2, 7, 1, 8, 2, 7, 1, 8, 2, 2, 7, 1, 8, 2, 8, 2, 7, 1, 8, 2, 8, 1, 2, 7, 1, 8, 2, 8, 1, 8, 2, 7, 1, 8, 2, 8, 1, 8, 2, 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5
Offset: 1

Views

Author

Omar E. Pol, Mar 14 2008

Keywords

Comments

Also, successive digits of A011543.

Examples

			Triangle begins:
..... 2
.... 2,7
... 2,7,1
.. 2,7,1,8
. 2,7,1,8,2
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=20,ed},ed=RealDigits[E,10,nn][[1]];Flatten[Table[Take[ed,n],{n,nn}]]] (* Harvey P. Dale, Dec 24 2014 *)

A179852 Number of terms in the simple continued fraction for (e truncated to n decimal digits).

Original entry on oeis.org

1, 4, 6, 8, 12, 13, 15, 17, 23, 24, 31, 23, 29, 29, 34, 38, 36, 42, 38, 47, 44, 44, 50, 48, 49, 54, 60, 56, 60, 61, 60, 60, 70, 68, 77, 72, 71, 82, 68, 81, 78, 83, 82, 82, 89, 91, 102, 90, 98, 99, 103, 97, 90, 107, 107, 112, 111, 120, 109, 115, 118, 112, 111, 127, 128, 133, 117, 117, 117, 139, 136
Offset: 1

Views

Author

Umut Uludag, Jan 11 2011

Keywords

Examples

			a(1): simple continued fraction (SCF) for 2 = 2 (1 term);
a(2): SCF for 2.7 = 2+1/(1+1/(2+1/3)) (4 terms);
a(3): SCF for 2.71 = 2+1/(1+1/(2+1/(2+1/(4+1/3)))) (6 terms).
		

Crossrefs

Programs

  • Maple
    Digits := 120 ;
    A011543 := proc(n) floor(exp(1)*10^n) ; end proc:A179852 := proc(n) A011543(n-1)/10^(n-1) ; numtheory[cfrac](%) ; op(%) ; nops(%) ; end proc: # R. J. Mathar, Jan 14 2011

A129897 a(n) is the integer that results from truncating both e and Pi to n digits, adding the results, and discarding the decimal point.

Original entry on oeis.org

5, 58, 585, 5859, 58597, 585987, 5859873, 58598744, 585987447, 5859874481, 58598744819, 585987448203, 5859874482048, 58598744820487, 585987448204883, 5859874482048838, 58598744820488384, 585987448204883846, 5859874482048838473, 58598744820488384737
Offset: 0

Views

Author

Kevin J Davis (kevin_j_davis(AT)btinternet.com), Jun 04 2007

Keywords

Examples

			From _Jon E. Schoenfield_, Feb 24 2021: (Start)
n=1: 2      + 3      = 5      --> a(1) = 5;
n=2: 2.7    + 3.1    = 5.8    --> a(2) = 58;
n=3: 2.71   + 3.14   = 5.85   --> a(3) = 585;
n=4: 2.718  + 3.141  = 5.859  --> a(4) = 5859;
n=5: 2.7182 + 3.1415 = 5.8597 --> a(5) = 58597; etc.
(End)
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=20,pi,e},pi=RealDigits[Pi,10,nn][[1]];e=RealDigits[E,10,nn] [[1]]; Table[FromDigits[Take[pi,n]]+FromDigits[Take[e,n]],{n,nn}]] (* Harvey P. Dale, May 28 2016 *)

Formula

a(n) = floor(floor(Pi*10^n) + floor(exp(1)*10^n)), Pi=3.14159..., e=2.71828....

Extensions

Corrected and extended by Harvey P. Dale, May 28 2016

A249126 Product of the first n digits of Pi (treated as a number) and the first n digits of e (treated as a number).

Original entry on oeis.org

6, 837, 85094, 8537238, 853922530, 85397212652, 8539729843352, 853973398759468, 85397341863406230, 8539734219628209684, 853973422224398765940, 85397342226185298383510, 8539734222671268708689351, 853973422267317150596927230, 85397342226735418150399772016
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2014

Keywords

Examples

			The first digit of Pi is 3, the first digit of e is 2, and 2 times 3 = 6, so a(1) = 6.  The first two digits of Pi are 31, the first two digits of e are 27, and 31 times 27 = 837, so a(2) = 837.
		

Crossrefs

Cf. A011543 (e), A011545 (Pi).

Programs

  • Mathematica
    Module[{nn=20,p,e},p=RealDigits[Pi,10,nn][[1]];e=RealDigits[E,10,nn][[1]];Table[FromDigits[Take[p,n]]FromDigits[Take[e,n]],{n,nn}]]
  • PARI
    a(n)=n--; floor(10^n * Pi) * floor(10^n * exp(1)) \\ Charles R Greathouse IV, Oct 21 2014

Formula

a(n+1) = floor(10^n * Pi) * floor(10^n * e). - Charles R Greathouse IV, Oct 21 2014
a(n) ~ Pi*e/100 * 100^n + O(10^n). - Charles R Greathouse IV, Oct 21 2014
a(n) = A011543(n-1)*A011545(n-1). - Michel Marcus, Oct 26 2014

A283158 Numbers k such that A011544(k-1) is a prime.

Original entry on oeis.org

1, 85, 555, 1508, 1781, 4224, 7037, 43740
Offset: 1

Views

Author

XU Pingya, Mar 01 2017

Keywords

Comments

For k <= 16000, there are seven primes in sequence A011544.
Round(e*10^112279) = floor(e*10^112279), and floor(e*10^112279) = A011544(112279) (=A007512(7)) is a prime. Thus 112280 = A064118(7) is also a term.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[Round[E*10^(n-1)]],Print[n]],{n,16000}]

Extensions

a(2) = 85 added by Jason Yuen, Jun 16 2025
a(8) from Michael S. Branicky, Jun 24 2025
Showing 1-8 of 8 results.