cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011658 Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Sequences of period k composed of (k-p) zeros followed by p ones have a closed formula of floor((n mod k)/(k-p)) for p >= floor(k/2). - Gary Detlefs, May 18 2011
a(n+3) is the determinant of an n X n pentadiagonal symmetric Toeplitz matrix with a=b=c=1. - R. J. Mathar, Jan 31 2023

Crossrefs

Cf. A198517. Parity of A010891(n+2).

Programs

Formula

a(n) = floor((n mod 5)/3). - Gary Detlefs, May 18 2011
a(n+2) = A198517(n+4) - A198517(n+2) + A198517(n). - Bruno Berselli, Nov 02 2011
a(n+4) = abs(a(n) - a(n+1) + a(n+2) - a(n+3)). - Benjamin Knight, May 06 2018
a(n) = (2/5) * (1 + cos(4*(n-4)*Pi/5) + cos(2*(n-3)*Pi/5) + cos(4*(n-3)*Pi/5) + cos(2*(n+1)*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018
G.f.: -x^3*(1+x) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Aug 11 2021
a(n) = floor(2*n/5) - 2*floor(n/5). - Ridouane Oudra, Apr 01 2023