A011658 Period 5: repeat [0, 0, 0, 1, 1]; also expansion of 1/(x^4 + x^3 + x^2 + x + 1) (mod 2).
0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
Offset: 0
Links
- J. Borowska and L. Lacinska, Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 1 for determinant of Toeplitz matrices a=b=c=1.
- R. Gold, Characteristic linear sequences and their coset functions, J. SIAM Applied. Math., 14 (1966), 980-985.
- Index entries for characteristic functions
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Programs
-
Maple
seq(floor(2*n/5) - 2*floor(n/5), n=0..100); # Ridouane Oudra, Apr 01 2023
-
Mathematica
PadRight[{},120,{0,0,0,1,1}] (* Harvey P. Dale, Dec 16 2015 *)
-
PARI
a(n)=(n%5)\3 \\ Charles R Greathouse IV, Jan 16 2017
Formula
a(n) = floor((n mod 5)/3). - Gary Detlefs, May 18 2011
a(n+4) = abs(a(n) - a(n+1) + a(n+2) - a(n+3)). - Benjamin Knight, May 06 2018
a(n) = (2/5) * (1 + cos(4*(n-4)*Pi/5) + cos(2*(n-3)*Pi/5) + cos(4*(n-3)*Pi/5) + cos(2*(n+1)*Pi/5)). - Wesley Ivan Hurt, Sep 26 2018
G.f.: -x^3*(1+x) / ( (x-1)*(1+x+x^2+x^3+x^4) ). - R. J. Mathar, Aug 11 2021
a(n) = floor(2*n/5) - 2*floor(n/5). - Ridouane Oudra, Apr 01 2023
Comments